Unilateral vestibular schwannomas affect only one ear. They account for approximately 8 percent of all tumors inside the skull; one out of every 100,000 individuals per year develops a vestibular schwannoma. Symptoms may develop at any age but usually occur between the ages of 30 and 60 years. Unilateral vestibular schwannomas are not hereditary.
Bilateral vestibular schwannomas affect both hearing nerves and are usually associated with a genetic disorder called neurofibromatosis type 2 (NF 2). Half of affected individuals have inherited the disorder from an affected parent and half seem to have a mutation for the first time in their family. Each child of an affected parent has a 50 percent chance of inheriting the disorder. Unlike those with a unilateral vestibular schwannoma, individuals with NF2 usually develop symptoms in their teens or early adulthood. In addition, patients with NF2 usually develop multiple brain and spinal cord related tumors. They also can develop tumors of the nerves important for swallowing, speech, eye and facial movement, and facial sensation. Determining the best management of the vestibular schwannomas as well as the additional nerve, brain, and spinal cord tumors is more complicated than deciding how to treat a unilateral vestibular schwannoma. Further research is needed to determine the best treatment for individuals with NF2.
Scientists believe that both unilateral and bilateral vestibular schwannomas form following the loss of the function of a gene on chromosome 22. (A gene is a small section of DNA responsible for a particular characteristic like hair color or skin tone). Scientists believe that this particular gene on chromosome 22 produces a protein that controls the growth of Schwann cells. When this gene malfunctions, Schwann cell growth is uncontrolled, resulting in a tumor. Scientists also think that this gene may help control the growth of other types of tumors. In NF2 patients, the faulty gene on chromosome 22 is inherited. For individuals with unilateral vestibular schwannoma, however, some scientists hypothesize that this gene somehow loses its ability to function properly.