

Vanderbilt Bill Wilkerson Center

Quantifying the Fatigue Factor: Listening-related Fatigue in Adults and Children with Hearing Loss

Hornsby, B., Camarata, S., Davis, H. & Bess, F. 22nd Annual CAA Conference

October 27th-30th, 2019

Halifax, NS, Canada

Disclosures

- All authors are employed by Vanderbilt University Medical Center (VUMC)
- Financial Disclosures- this work has been supported by federal and industry grant mechanisms
 - IES #R324A110266 (Bess, PI)
 - IES #R324A150029 (Bess, PI)
 - NIH R21 DC012865-01A1 (Hornsby, PI)
 - Starkey, Inc (Hornsby, PI)
- Nonfinancial Disclosures
 - None

Acknowledgements

- Lab Members and Collaborators
 - Fred Bess
 - Stephen
 Camarata
- Sasha Key
- Sam Sekator
- Melissa Henry
- Sun-Joo Cho
- Hilary Davis

What is fatigue?

See Hornsby, Naylor & Bess, 2016 for review

- No universally accepted definition exists
 - Occurs in the physical and mental domains
- <u>Subjective fatigue</u> is an ongoing "state", a mood or feeling of tiredness, exhaustion or lack of energy, a reduced desire or motivation to continue a task
 - Quantified via questionnaires and survey instruments
- **Behavioral (Cognitive) fatigue** is an outcome, a decrement in performance
 - Quantified via changes in physical or mental performance over time
- <u>Physiologic measures</u> can be used as <u>indirect</u> markers of subjective and behavioral fatigue

"[1 recommend] that the term fatigue be absolutely banished

from precise scientific discussion".

----Muscio (1921)

What is fatigue?

See Hornsby, Naylor & Bess, 2016 for review

- No universally accepted definition exists
 - Occurs in the physical and mental domains
- <u>Subjective fatigue</u> is an ongoing "state", a mood or feeling of tiredness, exhaustion or lack of energy, a reduced desire or motivation to continue a task
 - Quantified via questionnaires and survey instruments
 - Behavioral (Co. Fatigue is an outcome, a decrement in performance
 - Quantified via changes in physical or mental performance over time
 - Physiologic me subjective and
- can be used as <u>indirect</u> markers of I fatigue

----Muscio (1921)

"[1 recommend] that the term fatigue be absolutely banished

from precise scientific discussion".

Consequences of fatigue

Adults—

- Inattention, lack of concentration, poor mental processing and decision-making skills
- less productive and more prone to accidents
- less active, more isolated, less able to monitor own self-care

Children w/ Chronic Illnesses-

- inattention, concentration, distractibility
- poorer school achievement, higher absenteeism

Amato, et al. 2001; van der Linden et al. 2003; DeLuca, 2005; Eddy and Cruz, 2007; Ricci et al. 2007

Who Has Fatigue?

- Everybody!-
 - Complaints of <u>mild transient</u> fatigue are common even in healthy populations
- Severe, recurrent fatigue- is NOT common in healthy populations but is common in many chronic health conditions
 - Cancer, HIV AIDs, Parkinson's, MS
- Very little work examining fatigue associated with hearing loss in adults or children

Is fatigue a problem for people with hearing loss?

"..... I can attest to the **FATIGUE** caused by prolonged intensive listening in noise through hearing aids......". Mark Ross,

Pediatric Audiologist

Hearing Loss and Fatigue- Why the increased risk?

- Why would fatigue be a problem?
 - Active listening can be hard work!
- "I go to bed most nights with nothing left. It takes so much energy to participate in conversations all day, that I'm often asleep within minutes."
 - <u>https://hearingelmo.wordpress.com/2008/06/17/fatigue-fear-and-coping/</u>
 - Some data also supports a link b/w effort and fatigue

Perceived effort and fatigue

- Four groups of adults (N=31) with:
 - Bilateral HAs
 - SSD
 - Cls
 - Control
- Rated subjective effort and fatigue experienced on a daily basis
 - Similar trends across all groups

Is fatigue a problem for people with hearing loss?

"..... I can attest to the FATIGUE caused by prolonged intensive listening in noise through hearing aids.....". Mark Ross, Pediatric Audiologist

• Do data to support these reports?

Subjective fatigue in Adults with HL

POMS= Profile of Mood States (McNair et al., 1971)

- Used a **generic measure** (POMS) & compared normative data to older adults seeking help for HL report
 - similar fatigue but
 - significantly lower vigor
- N= 116 adults (55-94 years old)

Hornsby, B. & Kipp, A. (2016)

<u>Adults</u> with HL are at increased risk for <u>severe</u> fatigue and vigor deficits

- <u>More than twice</u> as likely to report severe fatigue and
- More than 4 times as likely to report severe vigor deficits!
- Severe = >1.5 st. dev.
 above normative mean

But... fatigue was not associated with degree of hearing loss

MFSI= Multidimensional fatigue symptom inventory- short form

Hornsby, B. & Kipp, A. (2016)

- Surprisingly, <u>no association</u> bw degree of loss and any fatigue/vigor domain
 - Similar result for POMS data as well
 - N= 143
 - Age range: 22-94 years
 - PTAs: 5-80 dB (Median: 33 dB)

It was associated with hearing handicap

Hornsby, B. & Kipp, A. (2016)

- Fatigue increased with increases in hearing handicap
- Esp. for "significant" handicap scores (HHIE/A scores >42)
 - Limited association for lower handicap scores

Type of hearing loss and fatigue

- Used a <u>generic measure</u> (FAS) to examine differences in fatigue b/w hearing loss groups
 - HA, CI, SSD (n=50 adults/group)
- No significant differences in fatigue b/w HL groups
 - But all HL groups reported more fatigue than NH controls

Modified from Alhanbali et al., 2017

Similar findings in Children with HL (CHL)

- Using a <u>generic</u>
 <u>measure</u> (PedsQL-MFS) CHL report more overall & cognitive fatigue than children without HL
- CHL (n=60) and CNH (n=43)
 - 6-12 years olds
 - Bilateral, mild to moderatelysevere HL

But... fatigue ratings in CHL are NOT associated with degree of hearing loss

- No association between degree of loss and fatigue
 - Regardless of domain, or PTA measure
 - Same as adult data

Take Home Points

- <u>Generic</u> fatigue measures suggest, in everyday settings adults & children with HL are at increased risk for fatigue,
 - Although fatigue magnitude varies across studies
 - Greatest risk is for more **<u>severe</u>** fatigue and vigor deficits
- The risk is *not* associated with the degree of HL or unilateral/bilateral differences
 - Do generic measures underestimate fatigue severity associated with HL?
- These findings highlight the need for a tool <u>specifically</u> designed to assess listening-related fatigue
 VANDED SCHOOL OF A

Listening-Related Fatigue Scales: Current Work

- Vanderbilt Fatigue Scales:
 - Adult version (VFS-A)
 - Child Version (VFS-C) [10-17 years old]
 - Parent-Proxy Version (VFS-P) [6-17 years old]
 - Teacher-Proxy Version (VFS-T) [6-17 years old]

GOAL: create and validate measures to quantify fatigue with <u>specific</u> focus on listening-related issues relevant for individuals with hearing loss and other communication difficulties.

Development & Validation of the Vanderbilt Fatigue Scales (VFS)

- Phase I- Defining the problem
 - Focus groups and interviews
- Phase II- Item creation
- Phase III- Initial data collection
 - item analysis, item reduction and preliminary scale assessment
- Phase IV- Additional data collection for validation purposes using final scale versions

Sample VFS Items

Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
0	0	0	0	0

• Listening fatigue is a daily struggle.

-Agreement Scale

VFS: Final Versions

- VFS-A versions
 - 40-item version
 - 10 items/domain
 - Physical
 - Mental
 - Social
 - Emotional
 - 10-item Unidimensional version
- Scales allow for summed scores & Item Response Theory (IRT) scoring

- VFS-C/P/T versions
 - VFS-Parents
 - 12 items (7 & 5/domain)
 - Physical
 - Social-emotional-cognitive
 - VFS-Children
 - 10 items- unidimensional
 - VFS-Teachers
 - 8 items- unidimensional

VFS Validation

- Data collected (N=1526) using the final versions of the scales were used to assess reliability and validity.
 - VFS-A: 463 adults
 - 10-item version
 - VFS-C: 151 children
 - VFS-P: 399 parents
 - VFS-T: 363 teachers

VFS Validation

- Reliability
 - Good internal consistency (Cronbachs Alpha >0.93)
 - Good test-retest reliability ($R^2 = 0.54-0.82$)
- Validity
 - Good Content Validity
 - Based on development process
 - Good Convergent/Divergent Validity
 - Weak-moderate associations with other <u>generic</u> fatigue scales
 - Weaker associations with other distinct constructs (i.e., Depression)

VFS-Summary

- The VFS provides an ecologically valid and reliable measure of listening-related fatigue
 - Currently available for research purposes (contact me)
 - Clinical versions coming soon (check our websites)
 - <u>https://my.vanderbilt.edu/listeninglearninglab/</u>
 - <u>https://my.vanderbilt.edu/hearingandcommunicationresearch/</u>
- Are the scales sensitive to the effects of HL?

Using the VFS to Examine HL Effects

Hornsby, B. & Kipp, A. (2016)

- Recall, <u>no association</u> bw degree of loss and any <u>generic</u> fatigue/vigor measure
 - POMS, FAS, or MFSI
 - What about with the VFS?

MFSI= Multidimensional fatigue symptom inventory- short form

Hearing Loss & listening-related fatigue

- Adult data:
 VFS-10
- Sensitive to effects of self-reported bilateral <u>HL</u> on listening-related fatigue
 - Note significant
 <u>decrease</u> in fatigue as self-reported loss increases from severe to profound

N=423 respondents

Hearing Loss & listening-related fatigue

- Adult data:
 VFS-10
- Weak (but significant) association b/w
 <u>degree of hearing</u>
 <u>loss (PTA)</u> and
 listening-related
 fatigue

Subset of n=99 respondents

Hearing Loss & listening-related fatigue

 Child data: <u>Parent-proxy</u> and <u>child</u> scales are sensitive to effects of self-reported HL on listening-related fatigue.

VFS and additional disabilities

- Disabilities <u>other than HL</u> may also increase listeningrelated fatigue
 Disability Types
 - This may confound our results

Cognitive Disability		
Visual Impairment		
Behavioral/Emotional Problem		
Physical Disability		
Speech-Language Impairment		
Genetic/Chromosomal		
Syndrome		

VFS and additional disabilities

 Disabilities <u>other than HL</u> may also increase listeningrelated fatigue

VFS and additional disabilities

• Disabilities other than HL may also increase listening-

related fatigue

- This may confound our results
 - Note Teacher "No HL" sample has high proportion of additional disabilities

VFS and self-reported HL

 Apparent lack of sensitivity of Teacher scale may reflect the high proportion of disabilities in the "No HL" sample

Take Home Messages

- Adults and children with hearing loss have an increased risk for listening-related fatigue
 - Risk is NOT associated with PTA
 - But is associated with *perceived* hearing difficulties
 - Self-rated HL and HHIE
 - <u>Disabilities other than HL</u> also increase risk for listeningrelated fatigue in children
- The VFS provides a valid, reliable measure of listening-related fatigue
 - Clinical versions are nearing completion

Using the VFS Clinically

- What can you do with the scale?
 - Identify those with high levels of listening-related fatigue
 - Assess benefits of interventions on listeningrelated fatigue
- What Interventions?
 - Hearing aid use may reduce fatigue in adults with mild-moderate HL

Using the VFS to examine HA Benefit

- Hearing aid use may reduce fatigue in adults with mildmoderate HL
 Audiogram & HHIE/A
 - Participants
 - 106 adults w/ Mildmoderate SNHL
 - Two groups (n=53/group)
 - Intervention group- 1st time hearing aid users
 - Control groupreferred, but did not get aids

J. Holman & G. Naylor (in preparation)

Using the VFS to examine HA Benefit

 <u>No effect</u> of hearing aid use on fatigue when measured using a <u>generic</u> scale

Using the VFS to examine HA Benefit

<u>Significant</u>
 <u>decrease in fatigue</u>
 following hearing
 aid fitting when
 measured using
 <u>VFS-A</u>

- At least at ~ 3

months out

0 -0.2 -0.4 -0.6 -0.8 Baseline +2 weeks +3 months -Control Intervention J. Holman & G. Naylor (in preparation)

VFS-AHL Group Means

Using the VFS- with Children

- Similar work in CHL is lacking, but potential interventions might include:
 - Provide a space and/or scheduled break time for listening/quiet breaks
 - Consider schedule of day and timing of auditory tasks, including therapies or other pull-out sessions
 - Consistent personal amplification and FM/RM system use
 - Preferential seating to potentially reduce listening effort
 - Visual information available in the classroom
 - Classroom acoustic modifications

See our lab website for more suggestions: https://my.vanderbilt.edu/listeninglearninglab/

Questions?

For more information check out our lab websites: <u>https://my.vanderbilt.edu</u> /listeninglearninglab/

https://my.vanderbilt.edu /hearingandcommunicat ionresearch/

