THE MULTI-FACETED COMPLEXITY OF SPEECH IN NOISE UNDERSTANDING AND TECHNOLOGICAL SOLUTIONS

Brent Edwards¹ Director, National Acoustic Laboratories Sydney, Australia

¹ Adjunct Professor, Macquarie University

Hearing Aid Technology for Improving Speech in Noise

- Noise reduction
- Directional microphones
- Array processing (beamforming)
- Remote microphones
- Multiband compression
- Feedback cancellation
- Frequency lowering

The Speech in Noise Problem

Nature of the Speech in Noise Problem

Hearing loss Measure	% of Non-owners (n=4,209)	% of Owners (n=3,109)	Hearing Aid Adoption (%)
Ears impaired			
Uniteral loss	39	13	10
Bilateral loss	61	87	32
Perceived loss	<u></u>		-
Mild	41	8	6
Moderate	46	52	27
Severe	10	36	55
Profound	2	4	38
Gallaudet Scale			
Hear whisper	17	7	12
Hearing normal speech	49	29	17
Hear shouts	29	49	36
Hear shout better ear	3	8	44
Tell speech from loud noise or worse	2	7	54
Difficulty hearing in noise			
Extremely difficult	11	36	53
Quite difficult	23	30	32
Somewhat difficult	35	25	19
Slightly difficult	25	8	10
Not at all difficult	6	1	8

Marketrak 7, 2009

Conversations in Noise the Main Complaint

Top-3 Box Satisfaction small samples in some cells – use caution	Owners:		Non-Owners:	
	HA <=5 years (n=769)	HA 6+ years (n=112)	Returners Who Tried HA (n=44)	Never Owned (n=2055)
Overall, across all listening situations	80%	67%	55%	42%
In conversations with 1 person	88%	79%	53%	62%
In the workplace	83%	70%	66%	46%
At home with family members	82%	74%	56%	49%
In conversations with small groups	81%	67%	54%	46%
When listening to music	80%	69%	55%	53%
When watching TV with others	79%	68%	56%	40%
During leisure activities (e.g., exercising, taking a walk, etc.)	78%	66%	57%	53%
Outdoors	78%	65%	54%	49%
In a store, when shopping	76%	62%	57%	46%
At a movie theater	75%	70%	62%	53%
When riding in a car	75%	69%	51%	46%
In a larger lecture hall (e.g., theater, concert hall, place of worship, etc.)	73%	59%	62%	38%
When talking to children	79%	67%	55%	42%
In conversations with large groups	71%	57%	54%	28%
When talking on a cell phone	70%	59%	50%	4/%
When talking on a traditional telephone	69%	59%	52%	51%
In a classroom (as observer or student)	68%	58%	76%	37%
When trying to follow conversations in the presence of noise (e.g., restaurant, etc.)	67%	50%	51%	25%

Marketrak 9, 2015

What is the nature of the difficulty?

How to Measure Speech in Noise Difficulty

Laboratory performance not always the same as in the real world

Field Ratings Test Booth -10 Very Good 100-DOMNI DIR - 8 80 Percent Correct p < .0001 p < .0001 60 6 40 4 1 2 20 0 Very Poor 0 60/0 75/+2 Speech **CST Test Condition** Understanding in Noise

72 SEMINARS IN HEARING/VOLUME 26, NUMBER 2 2005

Figure 1 Comparison of (left) the directional advantage obtained in an audiometric test booth under two test conditions to (right) field ratings of speech understanding in background noise for the two microphone modes. OMNI, omnidirectional; DIR, directional.

Walden *et al.*, 2005

Speech-shaped noise

Goal: Realism in Laboratory Testing

- Challenge is to make the testing situation as realistic as possible while also controlled and repeatable
 - Including access to all possible auditory cues available in real world

Environments	Positive References	
	CONV	SHA
One on one in quiet	9	12
Small group (~2-7 people)	8	7
Work	2	5
Restaurants	9	12
Crowds	4	13
Stores	1	4
Theater	5	5
Church or large room with microphone/s		
Outside (Open Spaces)		
Telephone	3	3
Electronic Speakers (Drive-Thrus)	1	1
TV	8	12
Bus	0	1
Car	5	8
Home Environmental Sounds	0	2
Singing		

 "I hear people talking and can tell where they are as I walk by even in traffic. It feels like I'm eavesdropping!"

- "I hear people talking and can tell where they are as I walk by even in traffic. It feels like I'm eavesdropping!"
- "I am better aware of sounds surrounding me."

- "I hear people talking and can tell where they are as I walk by even in traffic. It feels like I'm eavesdropping!"
- "I am better aware of sounds surrounding me."
- "The evening at the bar Thursday night was great. The background noise was loud but I could hear as well as good hearing folk, and I didn't have to ask anyone to repeat a thing - how good is that!!!."

Realistic Approach #1: Comprehension Task

The times were rough as I tried to establish myself in the field, but the projects were finally starting to pour in. Now I could finally enjoy some of the things I had always longed for, like building my dream house. But that night, though I was grateful to be there, I was more grateful that sleep was near [Q1].

Hafter *et al.*, 2012

Realistic Approach #2: Ambisonics

- Aim: to determine whether introducing realistic aspects to speech tests can better capture individual differences and ultimately produce more relevant performance measures. Specifically, the examining the psychometric effects of:
- a) transplanting a standard sentence-in-noise test simulated reverberant cafeteria environment, and
- b) moving from sentence recall to a new ongoing speech comprehension task.

The standard anechoic chamber, with a target (T) located directly in front of the listener (L), and four babble maskers (M) located at ±45° and ±135° azimuth.

The realistic reverberant cafeteria (HOA), with a frontal target and seven pairs of speech maskers located around the listener

Methods

Participants: N = 26. 18 NH + 28 HI with bilateral sensorineural hearing impairments (difference between the ears not greater than 25 dB)

Stimuli

Speech reception threshold (SRT): targets were Bamford-Kowal-Bench sentences spoken by an Australian male talker [Bench et al., 1979].

Comprehension: Targets were 2-4 min monologues spoken by the same talker using transcripts taken from the listening comprehension component of the International English Language Testing System (IELTS; Cambridge University Press)

Procedure

Estimate the individual 50% SRT , set this as the test SNR, as well as 2 dB above and below. Using these 3 SNRs estimate individual psychometric function and extract the 50% thresholds and slopes.

Outcomes

Hearing aid benefits by subtracting unaided SRTs from aided SRTs.

What about measures other than understanding?

Why People Are Unhappy with Hearing Aids

- Too much background noise (30%)
- Not natural/distorted (17%)
- Did not work well enough/"right" (13%)
- Durability/reliability issues (breaks, constant repairs, etc.) (7%)
- Too loud/only amplifies (6%)
- Ears plugged/occluded (4%)
- Physically uncomfortable (4%)
- Caused infection (4%)
- HCP did not do what was necessary to get them to work right (4%)

Marketrak 9, 2015

Alternatives to Understanding

• Noise comfort

Measure of Noise Tolerance

Acceptable Noise Level (ANL)

Acceptable Noise Level

Nabelek et al., 2006

Acceptable Noise Level

Alternatives to Understanding

- Noise comfort
- Listening effort

Listening Effort

- What we mean by increased effort with speech in noise:
 - Increased cognitive load
 - Increased mental fatigue
 - Poorer auditory memory
 - Poorer auditory scene analysis
 - Difficult focusing

Measures of Listening Effort

Measures of listening effort:

- Self-reported measures
- EEG measures
- Physiological measures (skin conductance, heart rate)

Ouiet

Vocoding 6-channel 16-channe

Change in pupil size (mm)

- Pupil dilation
- Behavioural tests

Ease of Language Understanding Framework

Rönnberg et al., 2008

Alternatives to Understanding

- Noise comfort
- Effort
- Conversation Partner

What About the Conversation Partner?

Participants

- 20 younger adult participants (13 female) aged 19-45 (mean=28.4, sd=6.9) with normal audiometric thresholds
- 20 older adults (6 female) aged 53-85 (mean=73.0, sd=7.4) with symmetrical SNHL.
- HI participants had 4FAHLs ranging from20-63.1 dB HL) (mean=41.2, sd=13.0)
- Participants were tested in pairs (1 NH with 1 HI participants)
- 5 realistic noise conditions
- 5 minute conversations were recorded in each noise condition
- The same participant pairing were used in both unaided and aided experiments

Beechey et al., In Review

Experiment Setup

Conversation Elicitation Task

Beechey et al., In Review

NH talker vocal level with with unaided conversation partner

NH talker F2 bandwidth with with unaided conversation partner

NH talker vocal level with with aided conversation partner

– aided - - unaided

NH talker F2 bandwidth with with aided conversation partner

– aided - - unaided

F2 bandwidth (Hz)

Technology for Speech in Noise Difficulty

Hearing Difficulty and Hearing Aid Use by Age Group

HEARABLE	HEARING AID & AUDIOL	OTC & SELF-FIT	
PTA < 25 dB HL Self-perceived difficulty	PTA > 25 dB HL Self-perceived difficulty Accepts Hearing Aids/	PTA > 25 dB HL Self-perceived difficulty Rejects Hearing Aids/	
PTA < 25 dB HL	Audiologist	Audiologist	
Self-perceived no difficulty	PTA > 25 dB HL Self-perceived no difficulty		

HEARABLE			
PTA < 25 dB HL 26M Self-perceived difficulty	PTA > 25 dB HL Self-perceived difficulty Accepts Hearing Aids/	PTA > 25 dB HL Self-perceived difficulty Rejects Hearing Aids/	
PTA < 25 dB HL	Audiologist	Audiologist	
Self-perceived no difficulty	PTA > 25 dB HL Self-perceived no difficulty		

Objective

 Which factors are indicators of a poor ability to understand speech in noise?

Participants

- \checkmark N = 122, normal or 'near-normal' hearing
- ✓ Normal tympanometry
- \checkmark 30 55 years of age

 \checkmark History of noise exposure and/or musical experience

Yeend *et al.,* 2017

STUDY DESIGN

Behavioural	Electro- physiology	Hearing Experiences
 122 participants Online survey Audiometry Auditory processing Cognitive skills 	 68 participants Five tests [CAEP's, IRN, speech ABR, click ABR, EFR] Designed to support behavioural measures 	 50 participants Interviews & online survey Exploring listening difficulties, impacts and strategies

Composite Speech-in-Noise Score

Musical experience and training

1) Does musical training benefit speech-in-noise perception, temporal processing and cognition?

Musical training and experience	(n)
None	30
Some (< 8 years)	22
Substantial (≥ 8 years including formal exams)	50
Professional (working as musician)	20

BEHAVIOURAL

ELECTROPHYSIOLOGY

2) Does the musician advantage have a neurophysiological basis?

Superior attentional skills appear to be a key factor underlying the musician advantage for understanding speech in noise.

Cognitive Integration with Technology

- Use cognitive measures in the clinic:
 - Predict difficulty with speech in noise
- Neurophysiological sensors embedded in hearing aids
 - Measure listening effort, focus

Separating Speech with Machine Learning

Talker One

Mesgarani et al., 2017

Brain Controlled Hearing Aid

Mesgarani et al., 2018

What Patient Complaints Can Hearing Aid Technology Address?

- Understanding
- Comfort
- Effort
- Fatigue
- Social interaction
- Conversation following
- Attention and focus

Clinical Implications

Implications for Clinical Treatment

- Understand client needs
 - Is it speech understanding or noise tolerance?
 - Are they predisposed for poorer speech-in-noise performance?
 - Adjust treatment, counseling accordingly
- Counsel on multifaceted aspects of poor speech in noise ability
- Measure meaningful outcomes
 - Not live voice word lists
- For normal audiograms with speech complaints
 - Measures 12 kHz, working memory
 - Provide non-traditional solutions
 - Hearables
 - Attention training

Thank you!

Brent.edwards@nal.gov.au

@bwedwards