Canadian Academy of Audiology Academie Canadienne d'audiologie

Cognitive Neuroscience of Tinnitus

Speaker: Dr. Fatima T. Husain, Professor, Department of Speech and Hearing Science, University of Illinois Urbana-Champaign Host: Stephen G. Lomber, Ph.D., Professor of Physiology at

McGill University, CAA Board Member

2023-04-26

CAA Webinars Include Live Zoom Transcription

Select the '<u>Q@A</u>' icon if you have questions or require technical assistance Locate the 'Live Transcript' icon on the bottom of your Zoom screen. (You may need to place your cursor at the bottom of the PPT for this to appear.) You can also select a larger font for your Transcript by selecting '<u>Subtitle Settings'</u>.

You have joined using <u>Computer Audio</u>' - if you wish to change to <u>Phone</u>, select the arrow besides '<u>Audio</u> <u>Settings</u>", and then switch to <u>"Phone Call'.</u> The dial in number will be displayed

Thanks to our Sponsor

Canadian Academy of Audiology is a professional association dedicated to enhancing the role of audiologists as primary hearing health care providers through advocacy, education and research.

Moderator – Stephen G. Lomber, Ph.D., Professor of Physiology at McGill University, CAA Board Member

Stephen G. Lomber, Ph.D. is a Professor of Physiology at McGill University and directs the Cerebral Systems Laboratory. Dr. Lomber is the Associate Editor of Hearing Research and Scientific Program Chair for the Annual Meeting of the Association for Research in Otolaryngology (ARO).

He is a past chair of the Gordon Research Conference on the Auditory System and the International Conference on Auditory Cortex, and a CAA Board Member.

Speaker: Dr. Fatima T. Husain, Professor in the Department of Speech and Hearing Science, University of Illinois Urbana-Champaign

Dr. Fatima T. Husain is a Professor in the Department of Speech and Hearing Science, University of Illinois Urbana-Champaign. She is also affiliated with the Neuroscience Program and the Beckman Institute for Advance Science and Technology.

Dr. Husain's research program is centered around three major themes: (1) normal audition and speech perception, (2) disorders of the auditory system, particularly hearing loss and tinnitus, and (3) effects of aging on audition and cognition.

Cognitive neuroscience of tinnitus

Fatima T. Husain, PhD

Professor Speech and Hearing Science, Neuroscience and Beckman Institute for Advanced Science and Technology

UNIVERSITY OF

Agenda

- 1. Tinnitus perception and reaction
- 2. Brain imaging Magnetic Resonance Imaging, neural networks
- 3. Alterations in neural networks due to tinnitus presence or tinnitus severity
- 4. Changes in neural networks due to interventions hearing aids, mindfulness based cognitive therapy

Poll

Tinnitus is known as the conscious perception of sound in the absence of an external source

Percept Reaction

- Pitch Sleep disturbance
- Loudness Concentration

•

- Duration Communication
- Laterality Stress
- Masking Anxiety
 - Depression
 - Suicidal ideation

Possible tinnitus generation sites of tinnitus

Adjamian, Peyman & Hall, Deborah & Palmer, Alan & Allan, Thomas & Langers, Dave. (2014). Neuroanatomical abnormalities in chronic tinnitus in the human brain. Neuroscience and biobehavioral reviews. 45. 10.1016/j.neubiorev.2014.05.013.

Tinnitus severity -> heterogeneity

• ...to help patients

Assessing tinnitus severity

Questionnaire name	Authors and year	Number of items	Response options for each item
Tinnitus Questionnaire	Hallam et al. (1988)	34	3 levels: true, partly true, not true
Tinnitus Handicap Questionnaire	Kuk et al. (1990)	27	100 levels: 100 = strongly agree, 0 = strongly disagree
Tinnitus Severity Scale	Sweetow and Levy (1990)	15	4 levels: wording of response options varies between items
Subjective Tinnitus Severity Scale	Halford and Anderson (1991)	16	2 levels: yes/no
Tinnitus Reaction Questionnaire	Wilson et al. (1991)	26	5 levels: not at all, a little of the time, some of the time, a good deal of the time, almost all the time
Tinnitus Severity Grading	Coles et al. (1992)	9	5 levels: wording of response options varies between items
Tinnitus Severity Index	Meikle (1992) and Meikle et al. (1995)	12	5 levels ^b : never, rarely, sometimes, usually, always
Tinnitus Handicap Inventory	Newman et al. (1996)	25	3 levels: yes, sometimes, no
Intake Interview for Tinnitus Retraining Therapy	Jastreboff and Jastreboff (1999)	12	7 items: 3 levels (always, sometimes, never); 2 items: 100 levels: 0–100% of time; 3 items: 0–10 numeric scale

Table 1. Nine widely used tinnitus questionnaires^a

^aEach of the nine questionnaires is cited in a separate bibliographic entry (see References).

^bOriginal version of Tinnitus Severity Index used more complex response options: six items had three levels, six items had four levels with wording of response options varying between items.

Meikle et al., Progress in Brain Research, 2008

But there are problems...

- No single questionnaire covers every dimension—each questionnaire omitted some dimensions
- All the questionnaires differ in regard to item format, scaling, and wording
- It is difficult to compare treatment effects obtained in different clinics
- No reliable psychoacoustic test of tinnitus

Neural correlates of severity?

- Although there might not be consensus about how exactly to measure severity, we all agree patients' reactions to tinnitus vary
 - Mild to severe spectrum
- No objective measurement of tinnitus severity
- Neural correlates may complement self-report
 - use brain imaging
 - more objective

Using brain imaging in tinnitus

Brain Imaging Studies

- 1. Provide information about neural mechanisms subserving both tinnitus generation and persistence
- 2. Objective measures of a subjective disorder in a heterogeneous population
- 3. Estimate effect of interventions
- 4. Provide information necessary to develop new therapies
- 5. Dissociate from impact of hearing loss
- 6. Advance theory of tinnitus

Assessing tinnitus severity using fMRI

- Auditory processing network
- Emotion processing network
- Attention networks
- Default mode network
- Interaction between these networks

Brain Function: Resting state fMRI

Resting State and Tinnitus

Tinnitus is uniquely suited to being studied via the resting state than other disorders because the presence and awareness of tinnitus puts the participant in a non-resting state.

Networks revealed

- Spontaneous fluctuations in the fMRI response
- Fluctuations can be correlated to show coherent networks
- DMN= default mode network, DAN
 = dorsal attention network, AUD = auditory network

Mantini et al.,. 2007

Default Mode Network function

"Sentinel hypothesis"

• Monitor external environment

"Internal mentation hypothesis"

• Self-reflective actions envisioning the future, theory of mind, autobiographical memory

Image from Greicius et al., 2009, Cerebral Cortex

Default mode and attention networks: anti-correlated

- Suppression of DMN during a task is important
- This relationship is disrupted outside of young healthy individuals

Summary of the first 6 studies

Ι

Eggermont and Roberts, Cell Tissue Res, 2014 Tinnitus: animal models and findings in humans.

Summary of ~100 studies

Some commonalities but vastly heterogeneous results

So what's going on here?

- Why is there little consensus?
- Is it the heterogeneity, i.e. different tinnitus subgroups?
 - Age? Severity? Lateralization? Time/cause of onset? Depression/anxiety? Genetics? Other comorbid factors?

• Or is it the tool?

• Even when using the same tool (e.g., fMRI) different data collection and analytical techniques

Replication in a heterogeneous patient population

- Replication crisis
- Reliability of a tool

Solution 1:

- Compare functional connectivity across tinnitus subgroups to identify potential biomarkers of tinnitus
 - Data pooled from a series of small studies
 - Keep acquisition same as much as possible, same analytical technique

Demographics

	Recent onset tinnitus Long term tinnitus							
					MLTIN			
	NH	HL	MLTIN1	MRTIN	2	BLTIN		
# Subjects	15	13	12	13	18	16		
3T Siemens Magnet	Allegra	Allegra	Allegra	Allegra	Trio	Trio		
TIN severity (THI						00 4 ±0 1		
score)	N/A	N/A	8.3 ± 6.8	15.7 ± 10.2	10.8±6	33.4 ±9.1		
				>6 months,				
TIN duration	N/A	N/A	>1 year	< 1 year	>1 year	>1 year		
			Schmidt et					
			al., 2013;					
	Schmidt	Schmidt	Carpenter-	Carpenter-	Schmidt	Schmidt		
Relevant	et al.,	et al.,	Thomspon	Thomspon	et al.,	et al.,		
Publication(s)	2013	2013	et al., 2015	et a l ., 2015	2017	2017		
	Mild tinnitus							

ANOVA results

One area of significance at p<0.05 FWE corrected: <u>precuneus</u>

episodic memory, consciousness, visuospatial memory, reflections on self

DMN: Individual beta-Values at (-10, -42, 48)

Schmidt, S. A., Carpenter-Thompson, J., & Husain, F. T. (2017). Connectivity of precuneus to the default mode and dorsal attention networks: A possible invariant marker of long-term tinnitus. NeuroImage. Clinical, 16, 196–204.

Conclusions

Reduced correlation between the default mode network and the precuneus may indicate the presence of tinnitus

- Tinnitus must be long-term (> 1 year) for this to manifest
- Tinnitus severity may mediate the strength of this reduction

Solution 1A:

- Compare functional connectivity across tinnitus subgroups to identify potential biomarkers of tinnitus
 - Data pooled from a series of small studies
 - Keep acquisition same as much as possible, same analytical technique
 - → Meta-analysis

Quantitative meta-analysis of resting state and gray matter studies

17 resting-state fMRI and 8 VBM reports of tinnitusassociated regional alterations were metaanalyzed using activation likelihood estimation (ALE).

Moring, J. C., Husain, F. T., Gray, J., Franklin, C., Peterson, A. L., Resick, P. A., ... & Fox, P. T. (2022). Invariant structural and functional brain regions associated with tinnitus: A meta-analysis. PloS one, 17(10), e0276140

1 = Cingulate Gyrus; 2 = Precuneus; 3 = Cingulate Gyrus/Precuneus; 4 = Posterior Cingulate/Precuneus; 5 = Posterior Cingulate/Precuneus.

Solution 2:

- Test the tool
- Collect data in same individuals, a week apart. Two sites: military (San Antonio, WHASC), civilian, Veteran (Illinois, UIUC)

Funding: Department of Defense

Scatterplot of tinnitus-related handicap values for visits A and B, plotted for each site. TFI: Tinnitus Functional Index, TPFQ: Tinnitus Primary Function Index. Linear trend lines, including a 45 degree line, are also plotted. If the values would be replicable across visits A and B, they would fall on the 45 degree line.

Husain et al., 2019, AJA

Replication at two Sites: 150 participants

Inter-class correlation values for correlations between all examined seed regions. Each panel represents a different subject group or analysis technique. In general, ICC scores for seed pairs across all subject groups (tinnitus or controls) are consistent, with warm colors appearing in the same areas of the matrices.

Schmidt et al., under review

Summary

- Resting state functional connectivity appears to be replicable for both controls and participants reporting tinnitus
- Reliable and useful tool to objectively measure impact of tinnitus in the brain
 - Some networks (attention, default) more reliable than others (auditory)
- Over multiple studies and now multiple sites, we are beginning to understand the functional connections and disconnections in the neural networks underlying tinnitus

Summary II

- Existence of possible invariant neural signatures of tinnitus
 - Varying across subgroups
 - Use a variety of imaging techniques (~30 papers from our group; metaanalysis)
- Develop automated programs to differentiate patients with tinnitus from controls
 - See Zimmerman et al., 2018; Shahsavarani et al., 2020
 - Husain et al., 2021 PATENT
- Develop new theoretical models
 - See Husain, 2016; 2021 (book chapter); Khan and Husain (2020)
- Evaluate interventions -- Husain et al., 2019; Zimmerman et al. 2019, Simonetti et a., 2021
- \Rightarrow Develop new interventions

Changes in brain networks due to interventions

Intervention: Hearing Aids

Intervention: Mindfulness Based Cognitive Therapy

(A) Connectivity between the default mode network (DMN) and clusters in the right thalamus and visual cortex significantly decreases from the pre-intervention session to the follow-up session. (B) Connectivity between the DMN and a cluster in the right angular gyrus significantly increases from the postintervention session to the follow-up session.

Recent advances

- Brain Function
- Brain anatomy
 - Gray matter
 - White matter
 - Blood-flow measures
 - Neurotransmitters

Tracing anatomical and functional connectivity

Khan, R. A., Sutton, B. P., Tai, Y., Schmidt, S. A., Shahsavarani, S., & Husain, F. T. (2021). A large-scale diffusion imaging study of tinnitus and hearing loss. *Scientific reports*, *11*(1), 1-12.

corpus callosum, left anterior thalamic radiation (ATR), bilateral superior longitudinal fasciculus and left inferior longitudinal fasciculus

Arterial Spin Labeling, perfusion data

Zimmerman, B. J., Schmidt, S. A., Khan, R. A., Tai, Y., Shahsavarani, S., & Husain, F. T. (2021). Decreased resting perfusion in precuneus and posterior cingulate cortex predicts tinnitus severity. *Current Research in Neurobiology*, *2*, 100010.

Poll

Take home message: Peripheral, Central, One, Several

- Old wisdom: Source of tinnitus is peripheral
- Current wisdom: Source of tinnitus is in central auditory pathways
- Old wisdom: One region generates tinnitus
- Current wisdom: Tinnitus generation and persistence is due to several large-scale neural networks
- Unanswered questions: What causes persistence? How do we separate generation from persistence?
- Partially answered question: What are the neural correlates of the impact of tinnitus (severity)?

www.acnlab.com

- Support
 - UIUC- AHS/CHAD, Campus Research Board
 - Charitable Organizations: Tinnitus Research Consortium, American Tinnitus Association
 - US Federal Agencies NIH, DoD
- Members of the Auditory Cognitive Neuroscience Lab
- Collaborators NIH, UIUC, U. of Iowa, Hearing Center Excellence, Wilford Hall Ambulatory and Surgical Center
- Volunteers!

Questions?

Contact - Contact@CanadianAudiology.ca

Webinar recording, and PDF will be posted to the CAA website within a few business days.

For those attending this session live you will receive a thank you for attending email. That is your record of attendance and CEU.

CAA Webinars Upcoming and On Demand

WEBINARS

Continuing Education Unit: each hour of CAA education equals 1 unit of continuing education (CEU)

AUDITORY SCENE ANALYSIS : UNDERSTANDING THE FUNDAMENTAL MECHANISMS OF AUDITORY PERCEPTION AND PERSPECTIVE FOR AUDIOLOGICAL REHABILITATION – THURSDAY, JUNE 9TH, 2022 – 2PM EST +

ARCHIVED WEBINAR: COCHLEAR IMPLANTATION AND SINGLE-SIDED DEAFNESS WITH KARI SMILSKY – AIRED THURSDAY, MAY 26TH, 2022 – 2PM EST

ARCHIVED WEBINAR: NEURAL CORRELATES OF LISTENING EFFORT WITH ANDREW DIMITRIJEVIC – AIRED FRIDAY, APRIL 29TH, 2022

ARCHIVED WEBINAR: CAA CLINICAL PLACEMENT WEBINAR - APRIL 19TH, 2022

ARCHIVED WEBINAR: IDA WEBINAR – IMPROVING CLIENT MOTIVATION AND SATISFACTION THROUGH PERSON-CENTERED CARE WITH ENA NIELSEN & HELLE GJØNNES MØLLER – AIRED: FEBRUARY 24, 2022 +

+

ARCHIVED VCM: VIRTUAL CONFERENCE MODULES - FALL 2021

https://canadianaudiology.ca/webinars/

Canadian Academy of Audiology Academie Canadienne d'audiologie

Thank You

