

CONCUSSION & VESTIBULAR ISSUES

Jamie M. Bogle, Au.D., Ph.D. 12 October 2023

DISCLOSURES

- <u>Relevant financial disclosures</u>: none
- Off-label investigational use: none
- Employed at Mayo Clinic Arizona
- Non-salaried faculty at the University of Colorado at Boulder, Gallaudet University, Salus University, Missouri State University
- American Academy of Audiology ARC Conference
 Committee Chair; American Balance Society President
- Honorarium for service as Associate Editor for the American Journal of Audiology
- Sub-contract funding from the U.S. Department of Defense (Vivonics, Inc.)

LEARNING OBJECTIVE

- 1. To discuss the relevance of vestibular testing post-concussion
- 2. To review relevant vestibular laboratory results
- 3. To discuss next steps regarding concussion testing protocol and management

CONCUSSIONS

CONCUSSION OVERVIEW

- Sport-related concussion is a significant public health concern.
- Professional / collegiate athletes recover in 7-10 days maybe
- Pediatric patients take longer, 21-59% may take >1 month
 - Associated symptoms include anxiety, depression, migraine, reduced school performance

COMMON CONCUSSION SYMPTOMS

Physical	Headache Head pressure Slow to get up Balance problems Nausea, vomiting Dizziness Blurred vision Light / noise sensitivity
Cognitive	Feeling mentally foggy Feeling slowed down "Don't feel right" or "feeling off" Drowsiness Dazed / confused Poor concentration Difficulty remembering Vacant look
Emotional	Irritability Sadness More emotional Anxiety

CONCUSSION OVERVIEW

 Vestibular / oculomotor system impairments are common and debilitating: dizziness, vertigo, fogginess, motion sensitivity, imbalance, gaze instability, blurry vision, diplopia

• 50-90% of adults

• 29-63% of pediatric patients

Alsalaheen et al 2010; Alvarez et al 2012; Ciuffreda et al 2008; Ciuffreda et al 2007; Ellis et al 2015 Goodrich et al 2007; Gottshall & Hoffer 2010; Kapoor & Ciuffreda 2002; Thiagarajan et al 2011

DIZZINESS & CONCUSSION

DIZZINESS IS COMMON

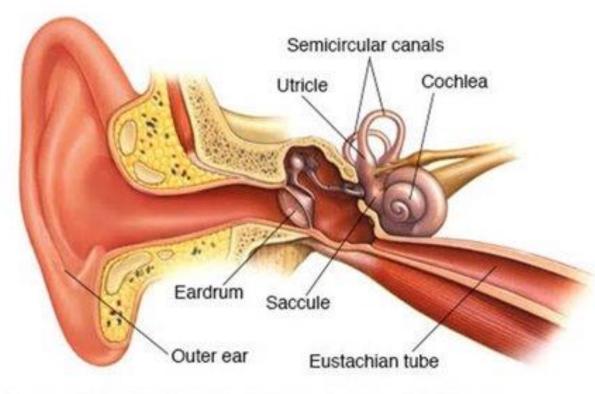
Up to 81% demonstrate dizziness symptoms

DIZZINESS PREDICTS PROLONGED RECOVERY

Those with dizziness symptoms take **3x** longer to return to school and **4x** longer to return to play

Corwin et al 2015; Ellis et al 2017; Smulligan et al 2022

DIZZINESS & CONCUSSION


- Dizziness feels bad address it quickly.
- Prolonged dizziness / imbalance?
 Anxiety, depression
 School accommodations, absences
 General malaise
 Lack of movement, exercise
 Difficulty concentrating, remembering
 Mental fogginess

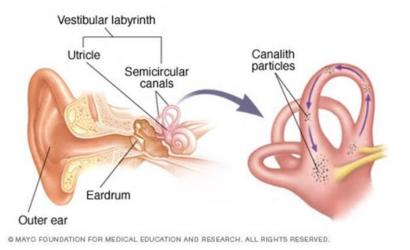
Corwin et al 2015; Heyer et al 2018

WHAT DO YOU MEAN BY DIZZINESS?

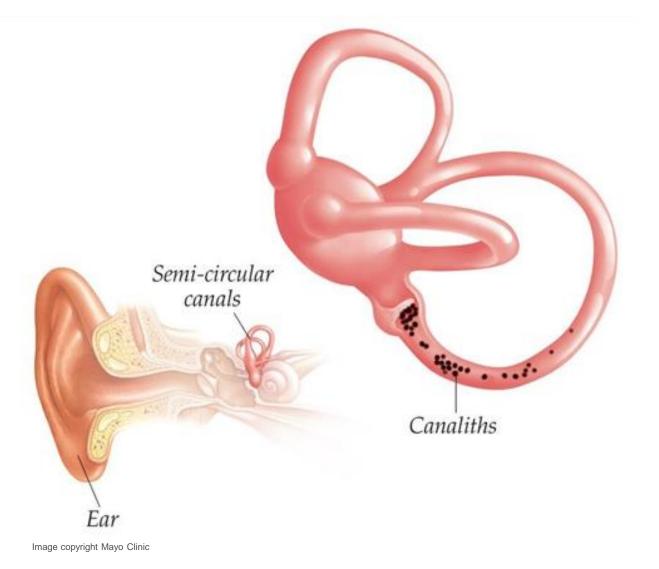
- Vertigo
- Motion sickness, nauseous
- Imbalance
- Lightheaded

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED

VERTIGO


- Direct end organ injury
- BPPV
- Labyrinthine concussion
- Perilymph fistula
- Post-traumatic endolymphatic hydrops
- Superior semicircular canal dehiscence
- Otolith dysfunction
- Medication side effects

Ahn et al 2011; Barber 1964; Brodsky et al 2018; Davies & Luxon 1995; Gordon et al 2004; Hoffer et al 2004; Picciotti et al 2016; Reneker et al 2017; Telian & Shepard 1996


BENIGN PAROXYSMAL POSITIONAL VERTIGO

- 1. Debris from otolith (gravity sensor) is dislodged
- 2. Migrates to semicircular canal (spinning sensor)
- 3. Alters function of the spinning sensor now sensitive to gravity
- 4. Abnormally triggers eye movement (nystagmus), spinning sensation with position change

Brodsky et al 2018; Gordon et al 2004; Motin et al 2005; Ouchterlony et al 2016

BENIGN PAROXYSMAL POSITIONAL VERTIGO

- Short duration, intense vertigo occurring after a specific position change
- Post-concussion presentation
 - Pediatrics: 5-29%; increased risk in those with migraine history
 - Adults: 5-57%

Ahn et al 2011; Barber 1964; Brodsky et al 2018; Davies & Luxon 1995; Gordon et al 2004; Hoffer et al 2004; Picciotti et al 2016; Reimer et al; 2020; Reneker et al 2017; Telian & Shepard 1996; Wang et al 2021

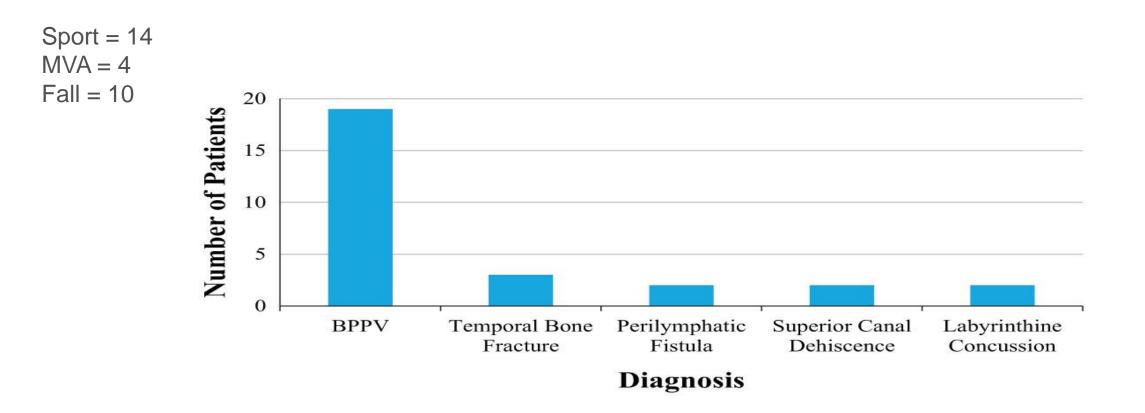
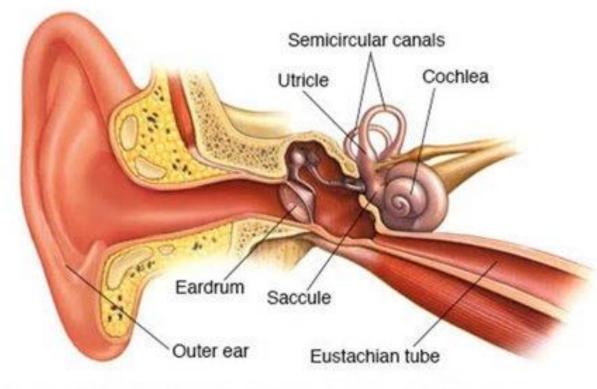



Figure 1. Peripheral vestibular disorders diagnosed in 28 patients in the setting of postconcussion syndrome in patients aged 7 to 20 years. BPPV, benign paroxysmal positional vertigo.

Published in: Jacob R. Brodsky; Talia N. Shoshany; Sophie Lipson; Guangwei Zhou; *Otolaryngol Head Neck Surg* 159, 365-370. DOI: 10.1177/0194599818770618 Copyright © 2018 Official journal of the American Academy of Otolaryngology–Head and Neck Surgery Foundation

VESTIBULAR SYSTEM PRESENTATION

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED

 Abnormal vestibular testing (VOR)?
 Commonly reported in earlier TBI / concussion literature

• Up to 71%

Akin & Murnane 2011; Barber 1969; Basta et al 2005; Davies & Luxon 1995; Gannon et al 1978; Kay et al 1971; Linthicum & Rand 1931; Pearson & Barber 1973; Scherer et al 2011

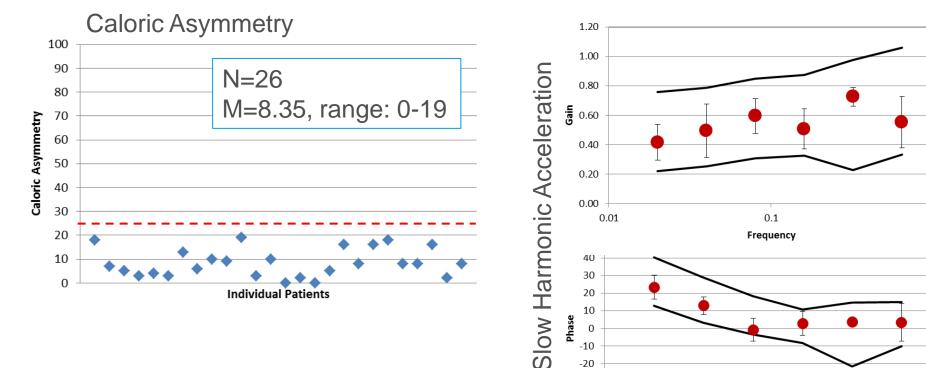
VESTIBULAR SYSTEM PRESENTATION

	No. of Patients Tested	Patients With Abnormal Outcomes	
Evaluation: Subtest/Measurement		No.	%
Video nystagmography			
Spontaneous/evoked nystagmus	41	10	24
Ocular motor function	41	10	24
Bithermal caloric test	4	3	21
Rotation			
Vestibulo-ocular reflex gain	41	11	27
Vestibulo-ocular reflex phase	41	9	22
Asymmetry	41	8	20
Fixation	40	2	5
Visual vestibulo-ocular reflex	40	2	5
Dynamic Visual Acuity Test	23	13	57
Cervical vestibular evoked myogenic potential			
Threshold	38	7	18
Latency	38	2	5
Amplitude	38	4	10
Computerized dynamic posturography			
Sensory Organization Test composite score	40	16	40
Sensory analysis	40	16	40
Center-of-gravity alignment	40	10	25
Motor function	39	4	10
Adaptation	39	13	33
Subjective visual vertical test	38	5	13

- 9.5% within normal limits
- 57% abnormal DVAT
- 40% abnormal balance
- 25% abnormal VNG
- No BPPV noted
- Peripheral vestibulopathy remains questionable
 - Reneker et al (2018): 44% abnormal VOR
 - Alshehri et al (2016): no abnormal VOR

Alshehri et al 2016; Reneker et al 2018; Zhou & Brodsky 2015

VESTIBULAR SYSTEM PRESENTATION


- Comparison of children (8-17 years) +/- concussion symptoms
- Mean time post-concussion:
 60 days
- No significant differences noted: balance, cVEMP, SHA, SVV

J Head Trauma Rebabil Vol. 36, No. 4, pp. 264–273 Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

Vestibular, Oculomotor, and Balance Functions in Children With and Without Concussion

Graham D. Cochrane, BA; Jennifer B. Christy, PhD, PT; Anwar Almutairi, DPT, PhD; Claudio Busettini, Eng, PhD; Hendrik K. Kits van Heyningen, BS; Katherine K. Weise, OD, MBA; Mark W. Swanson, OD, MPH; Sara J. Gould, MD, MPH

VESTIBULAR SYSTEM PATHOLOGY

-20 -30

-40

-50

0.01

0.1

Frequency

All traditional caloric / rotational chair studies within normal limits, no evidence of compensated / acute vestibulopathy. 1

1

WHAT ABOUT VEMP?

- Patients post-concussion may demonstrate reduced oVEMP responses (reduced amplitude, greater asymmetries)
- Increased number of concussions is associated with poorer VEMP responses
- cVEMP is less involved than oVEMP

• Challenges? Sound tolerance; consider bone conduction

Rodriguez et al 2022

QUESTIONNAIRES

- Pediatric Visually Induced
 Dizziness Questionnaire
 - 6-17 years of age
 - Validated; children with migraine, concussion, vestibular disorders
 - Examples: riding in a car, walking down the aisle of a market, using the computer

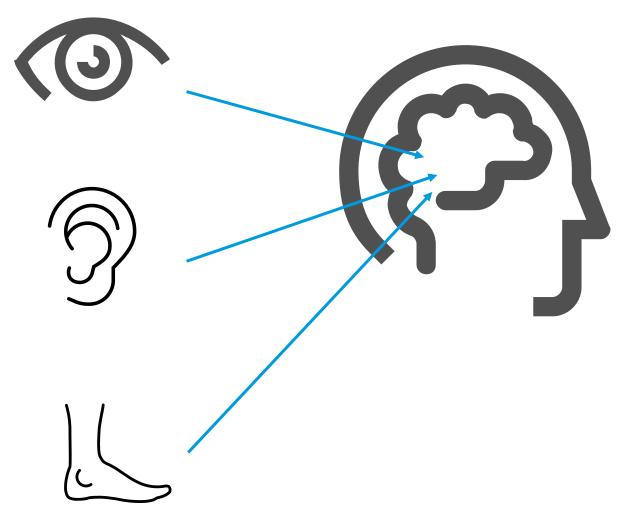
- Vestibular / Ocular Motor Screening – Child (VOMS-C)
 - \geq 5 years
 - Symptom provocation during oculomotor tasks: smooth pursuit, saccades, NPC, VOR, visual motion

Kaae et al 2022; Pavlou et al 2017; Trbovich et al 2022

DOES NORMAL MEAN NORMAL IN CONCUSSION?

Overall normal studies – the patient is still dizzy.

How does "normal" peripheral function integrate into the "abnormal" central system?

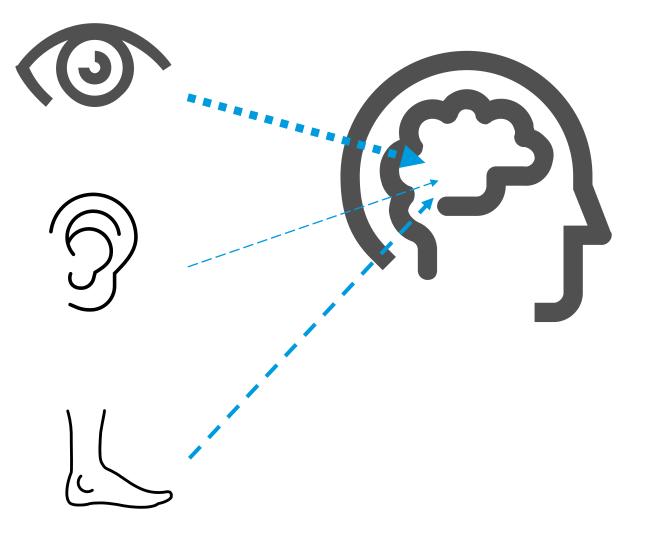

Image copyright GettyImages 3 Mayo Foundation for Medical Education and Research | slide-21

CENTRAL EFFECTS OF CONCUSSION

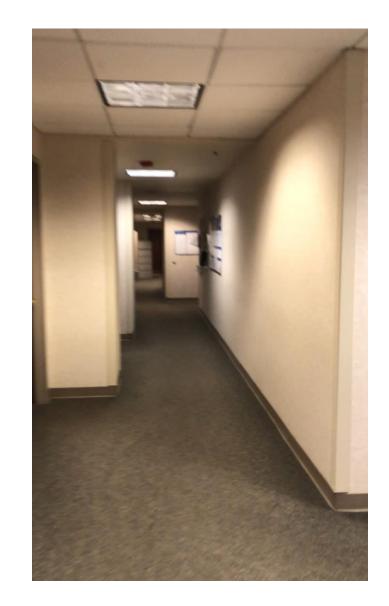
- Concomitant injury
- Diffuse axonal injury
- Post-concussion migraine
- Cervical vertigo
- Vestibular symptoms: cerebellum, fusiform gyri
- Convergence insufficiency: anterior thalamus, genicular nucleus optic tract
- Processing speed: anterior thalamus

Alhilali et al 2014

CENTRAL VESTIBULAR SYSTEM


Sensory Integration

O MAYO FOUNDATION FOR MEDICAL EDUCATION AND REDEARCH. ALL RIGHTS RESERVED.


SENSORY INTEGRATION

- Vestibular system requires dynamic flexibility and timing of neural transmission
 - Peripheral damage alters input
 - Central damage alters spatial computations
- Sensory information is misinterpreted
 - E.g., overdependence on visual information, leads to movement illusions → instability, blurry vision, motion sickness

SENSORY INTEGRATION

- Symptoms
 - Dizziness (spinning, rocking, "off")
 - Nausea
 - Blurry vision
 - Motion intolerance
- Triggers
 - Quick head, body movements
 - Busy visual environments
 - Visual tasks (e.g., reading, computer work, note taking)

SENSORY INTEGRATION

- Sensory integration abnormalities:
- Motion sensitivity
- Imbalance
- Dizziness with:
 - quick head turns
 - busy places
 - scrolling text
 - action movies

Vestibular Rehabilitation

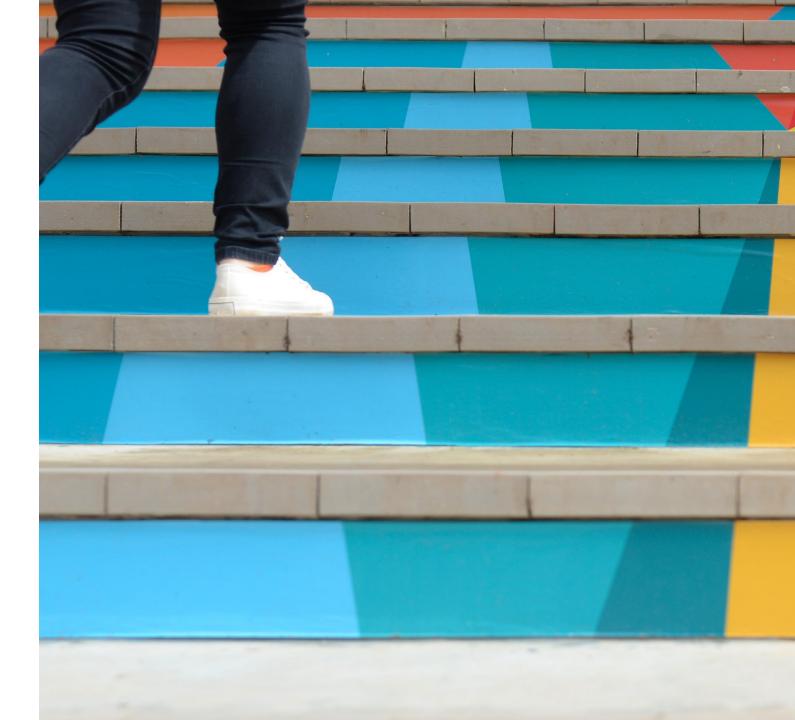
- Designed to alleviate primary and secondary symptoms due to balance / dizziness disorders
- Problem based approach to promote compensation
- Exercise based program
 - Reduce dizziness (habituation)
 - Improve gaze stability
 - Improve balance

Alsalaheen et al 2010; Brahm et al 2009; Capo-Aponte et al 2017; Goodrich et al 2003; Goodrich et al 2007; Gottsdall 2011; Gottshall et al 2005; Lew et al 2007; Magone et al 2014; Murray et al 2017; Park et al 2018; Schneider et al 2017; Schneider et al 2014; Stelmack et al 2009

©2023 Mayo Foundation for Medical Education and Research | slide-26

AUTONOMIC DISORDERS

- Not all dizziness is vertigo
- Does your patient get dizzy / lightheaded / syncopal when standing up?


KEY POINT

Question dizziness triggers – orthostatic dizziness may be due to an autonomic disorder

- Consider orthostatic hypotension, autonomic dysfunction
- **COMMON** in concussion!
- May have a delayed onset, 3-4 weeks is common
- Central autonomic network is complex: cerebral cortex, amygdala, stria terminalis, hypothalamus, brainstem, etc

Bishop et al 2017; Conder & Conder 2014; Esteroy & Greenwald 2017; Gould et al 2022; Heyer et al 2018; Hilz et al 2016; Mccorry 2017; Thayer et al 2009 2

DIAGNOSTIC PROTOCOLS

RETURN TO PLAY CLINIC

- Single morning, 3 providers
- Weekly / biweekly follow up until discharge

Ŧ

NEUROLOGY

- History
- Physical examination
- Headache management
- Exercise initiation

NEUROPSYCHOLOGY

- Cognigram
- Accommodations

AUDIOLOGY

Objective evaluation

RETURN TO PLAY PROTOCOL

Rehabilitation Stage	Functional Exercise	Objective
1. No activity	Symptom limited rest	Recovery
2. Light aerobic exercise	Walking, swimming, stationary cycling	Increase heart rate
3. Sport-specific activity	Sport drills, no head impact activity	Sport movement
4. Non-contact training drills	More complex sport drills, resistance training	Coordination and cognitive load
5. Full-contact practice	Full training activities	Confidence, functional skills
6. Return to play	Routine game play	McCrory et al 2

McCrory et al 2013

ACUTE VESTIBULAR PROTOCOL (<1 MONTH)

- Balance
- Oculomotor
- Gaze stability
- Initial evaluation
- Monitoring during recovery
- discharge

- Why the limited protocol?
 - Tolerance
 - Time
 - Decision making

PROLONGED SYMPTOMS?

- Multidisciplinary team
 - Neurology
 - Neuropsychology
 - Audiology
- May also include
 - Autonomic evaluation
 - Ophthalmology
 - PT/OT, vision therapy
 - Exercise rehabilitation
 - Psychiatry
 - Imaging

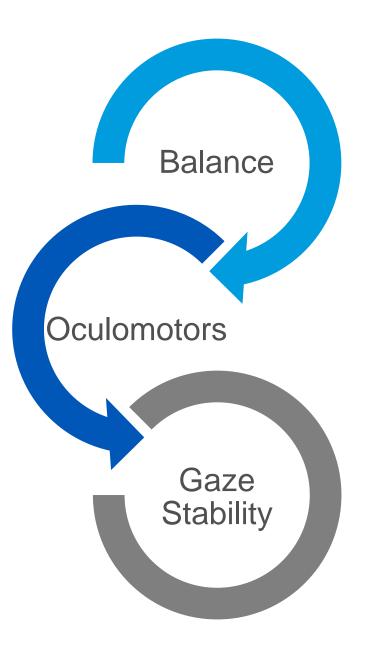
- Management
 - Headache
 - Exercise tolerance
 - Address maladaption
 - Address stress, anxiety, poor sleep
 - Monitor 4-6 weeks, 3-6 months until plateau / resolution

Not all concussions are managed acutely

VESTIBULAR REHABILITATION

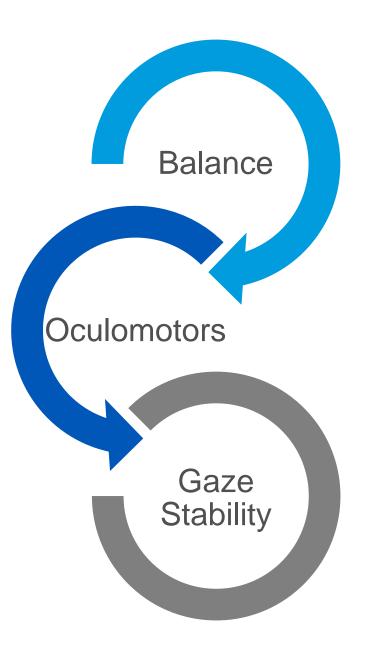
- VOR adaptation
- Symptom habituation
- Oculomotor function
- Balance
- Gait
- Canalith repositioning (Epley maneuver)
- Rehabilitation must be individualized in order to provide the most effective outcomes.

WHAT'S THE EVIDENCE?


- Does vestibular rehabilitation work?
 - Weak/limited evidence... but promising!
 - Lack of controls, randomization
 - Overall evidence that VR is more effective than rest, graduated exertion
 - Decreases symptoms, recovery time
 - No significant negative effects

REHABILITATION CO-MORBIDITIES

- Cognitive, behavioral issues
- Visual-perception dysfunction
- Metabolic dysfunction
- Autonomic dysfunction


• Any of these may lead to prolonged rehabilitation and must be addressed for recovery.

Gurley et al 2013

DIAGNOSTIC PROTOCOL

Post-concussion evaluation and monitoring protocols

DIAGNOSTIC PROTOCOL

Balance

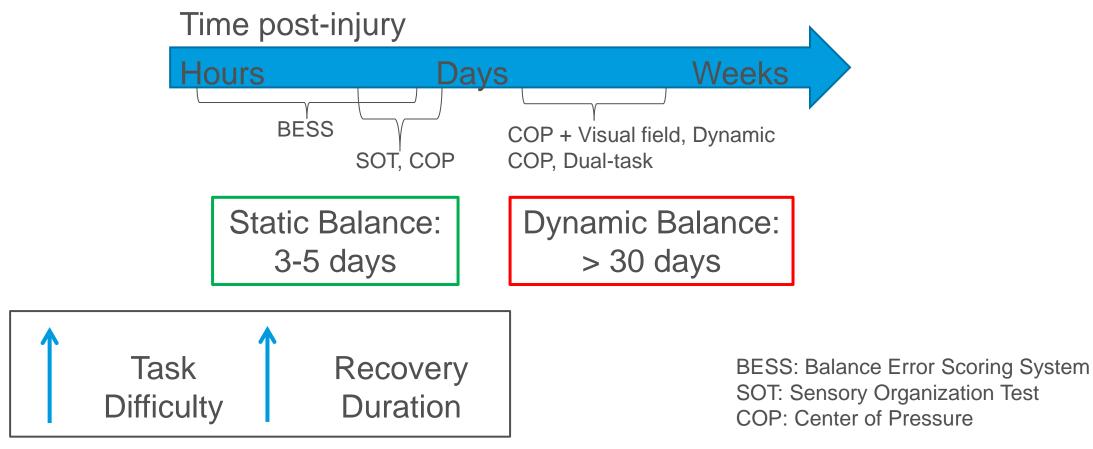
- Most reported in the literature 52% abnormal static balance
- Increased reliance on visual cues
- Poor use of vestibular input
- Abnormal sway → may not be outside normal limits
- Prevalence of physiologically inconsistent patterns (~20%)

Akin & Murnane 2011; Basford et al 2003; Geurts et al 1996; Picket et al 2007; MCA data

BALANCE MEASURE

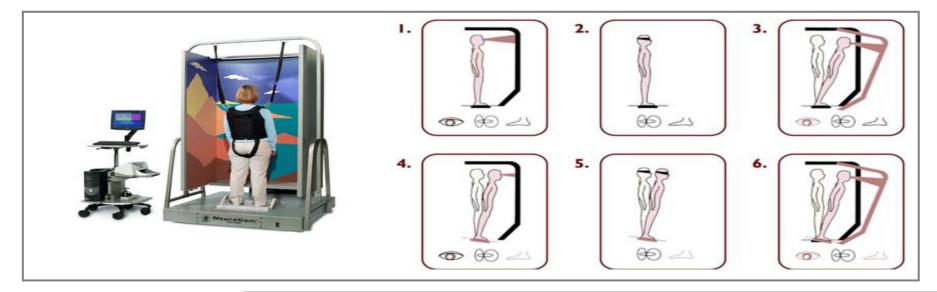
Balance System Maturation

- Somatosensory: 3-4 years
- Vision, vestibular: 15-16 years
- Female > male


Clinical Balance Abnormalities

- Static balance: 28%
- Dynamic balance: 53%

Steindl et al 2008


BALANCE RECOVERY

Cavanaugh et al 2006; Guskiewicz et al 1996; McCrea et al 2003; McCrea et al 2013; Parker et al 2006; Reimann et al 1999; Slobonouv et al 2006; Slobonouv et al 2008

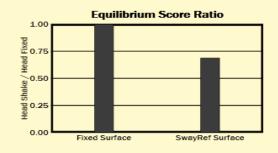
IMBALANCE • Romberg, BESS, mCTSIB

Computerized dynamic posturography

Often bedside and diagnostic tests are within normal limits for athletes / top performers.

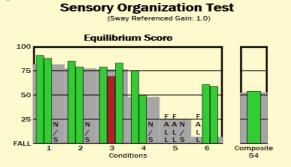
IMBALANCE

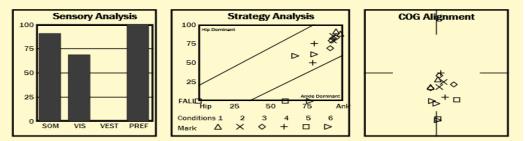
Standard Condition 5


HS-SOT Condition 5

Equilibrium Score

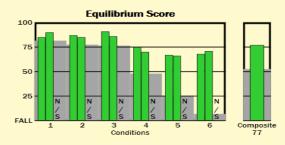
Sensory Organization Test (Sway Referenced Gain: 1.0)


Head Shake-SOT (Horizontal)

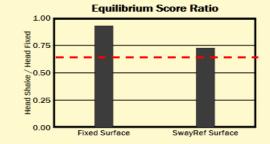


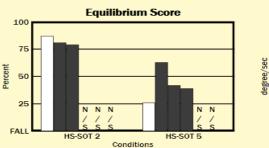
Abnormal ratio < 0.7

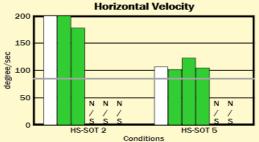
Quantifies balance ability when accurate, dynamic changes in vestibular system information are required.

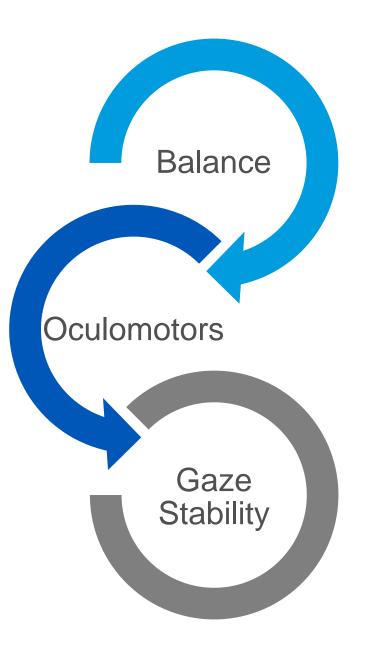


Data Range Note: NeuroCom Data Range: 9 - 10

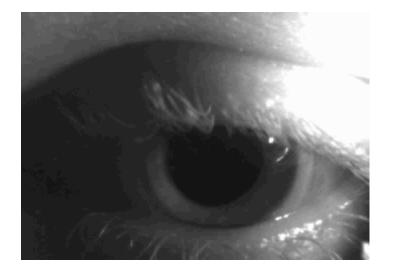

- 10 yo, male ۲
- Football




(Sway Referenced Gain: 1.0)



Head Shake-SOT (Horizontal)

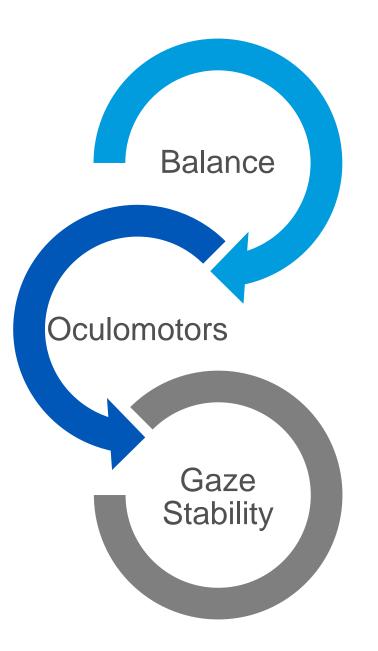

DIAGNOSTIC PROTOCOL

Oculomotors

- Up to 80% report vision problems
 post-concussion
 - Blurred vision
 - Diplopia
 - Impaired eye movement
 - Difficulty reading
 - Ocular pain
 - Poor vision-based concentration
- Visual symptoms significantly impact academics

Alsalaheen et al 2010; Brahm et al 2009; Capo-Aponte et al 2017; Goodrich et al 2013; Goodrich et al 2007; Gottshall 2011; Gottshall et al 2005; Lew et al 2007; Magone et al 2004; Murray et al 2017; Park et al 2018; Schneider et al 2017; Schneider et al 2014; Stelmack et al 2009 ©2023 Mayo Foundation for Medical Education and Research | slide-43

OCULOMOTOR EVALUATION


22-year-old male Soccer goalie

Gaze-evoked nystagmus

- Look for saccadic intrusions
- Saccades
- Smooth pursuit / OKN
- Convergence / accommodation
 - Convergence: simultaneous movement of both eyes in opposite directions to obtain / maintain single binocular visions; up to 42% (3% controls)
 - Accommodation: eye response when shifting focus from a distant to near object; up to 73% (13% controls)

Chinn et al 2022; Cochrane et al 2020; Reneker et al 2008

Abnormalities

DIAGNOSTIC PROTOCOL

Gaze Stability

VESTIBULO-OCULAR REFLEX

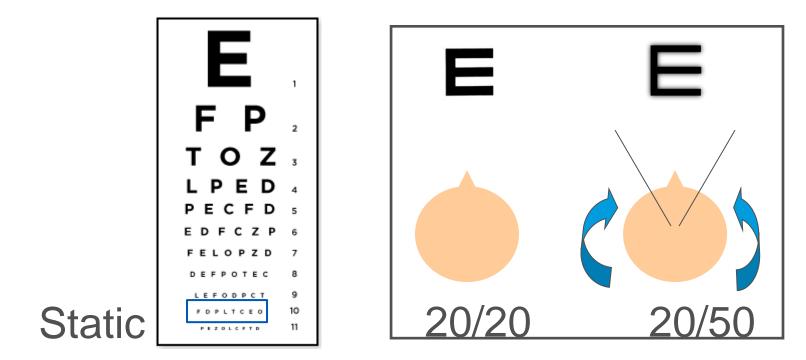
- <u>Goal</u>: to ensure best vision by moving the eyes contrary to the head, stabilizing gaze during movement
- 1. Semicircular canals / otolith organs
- 2. Central processing
- 3. Motor output

Alshehri et al 2016; MCA data

FUNCTIONAL VOR

Symptoms? Dizziness Nausea **Blurry** vision Difficulty working on computers, reading Dizziness in busy visual environments Motion intolerance

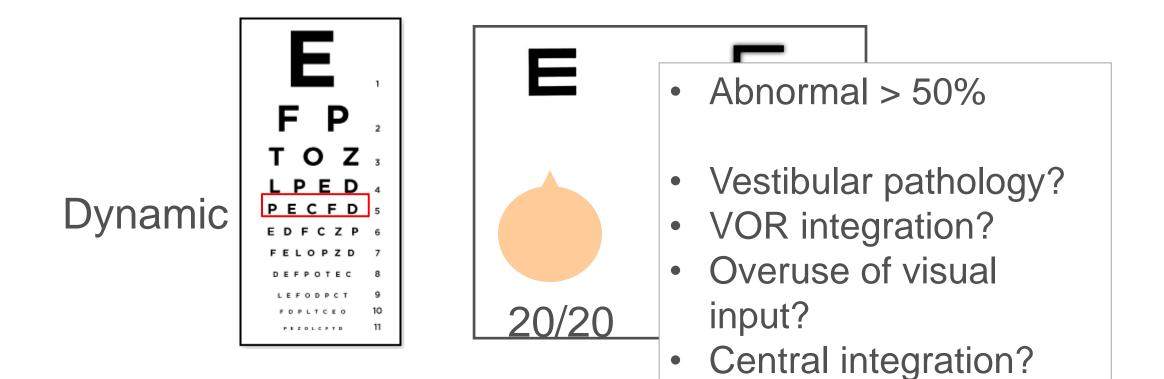
- AKA Gaze Stability
- Requires appropriate VOR function
 - Moderate to good reliability
- Quantifies the *functional impact* of underlying VOR abnormalities – up to 50% abnormal
- Documents function impact of central pathology
- Rehabilitation planning


Kaufman et al 2014; MCA data

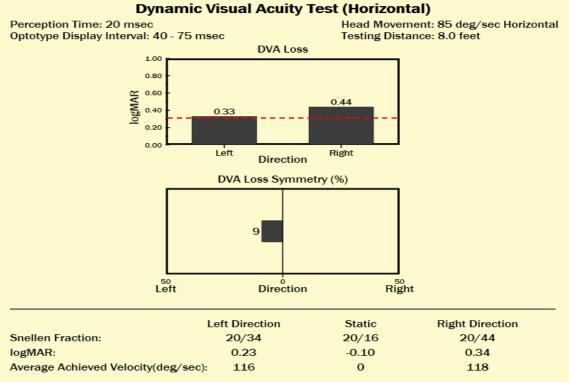
GAZE STABILIZATION

• Dynamic Visual Acuity Test (DVAT)

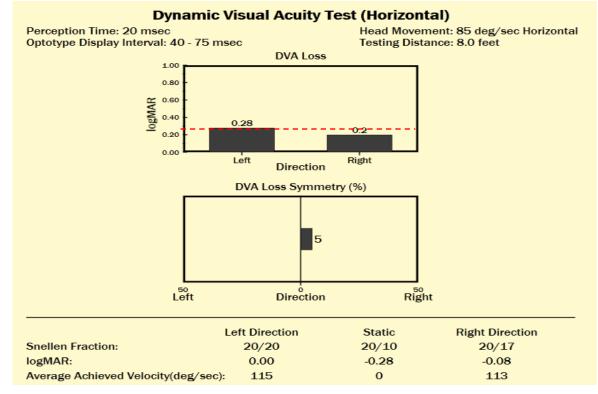
Neurocom



GAZE STABILIZATION


• Dynamic Visual Acuity Test (DVAT)

Neurocom



- 10 yo, male
- Football

17 days post-TBI

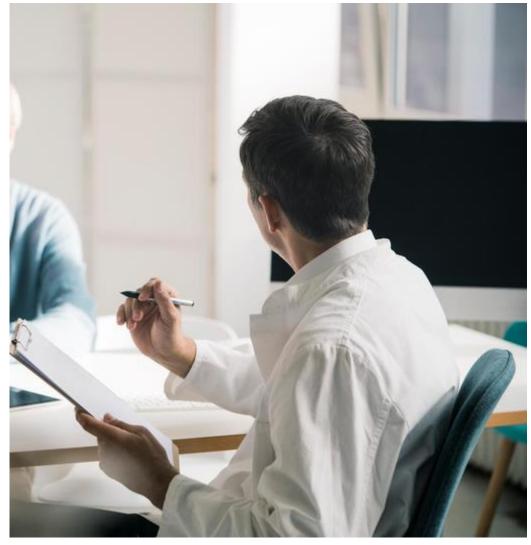


Image copyright GettyImages

ACUTE INJURY MANAGEMENT

Evaluation timeline

- Initial evaluation
- 1 week follow up
- Discharge

Protocol

- Balance
- Oculomotors
- Gaze stability

PROLONGED INJURY MANAGEMENT

Evaluation timeline

- Initial evaluation
- Variable follow up

Protocol

- Balance
- Oculomotors
- Gaze stability
- VOR
- Otolith reflexes
- Audiometry
- Etc

MANAGEMENT

Step 1: Define the dizziness	Step 2: What's the plan?	Step 3: Don't forget about
Vertigo / sensory integration, oculomotor → refer to VRT, vestibular specialist	 Rehabilitation exercises, repositioning Movement! 	 Increased risk for depression Reduced social engagement Maladaptation Influence of headache, migraine
Lightheadedness, autonomic symptoms → refer to medical team	 Medical observation, management Avoid deconditioning exercise is key! 	Include: • Back to school, work • Aerobic activity

Esteroy & Greenwald 2017; Gurley et al 2013; Reneker et al 2017; Schneider et al 2014

REDUCE THE EFFECTS

- Establish a rehabilitation program early
 - Research demonstrates reduced days to medical clearance, symptom recovery
 - Get athletes back to school, sport sooner
 - Include aerobic activity
- Include a team dizziness is complex!

THANK YOU

bogle.jamie@mayo.edu

©2023 Mayo Foundation for Medical Education and Research | slide-55

Conder RL, Conder AA. 2014. Heart rate variability interventions for concussion and rehabilitation. Front Psychol 5: 890.

Corwin DJ, et al. 2015. Vestibular deficits following youth concussion. J Pediatr 166: 1221-1225.

Crowin DJ, et al. 2014. Characteristics of prolonged concussion recovery in a pediatric subspecialty referral population. *J Pediatr 165*(6): 1207-1215. Davies RA, Luxon LM. 1995. Dizziness following head injury: a neuro-otological study. *J Neurol 242*(2): 222-230.

Ellis MJ, et al. 2017. Clinical predictors of vestibulo-ocular dysfunction in pediatric sports-related concussion. J Neurosurg Pediatr 19(1): 38-45.

Ellis MJ, et al. 2015. Vestibulo-ocular dysfunction in pediatric sports-related concussion. J Neurosurg Pediatr 16(3): 248-255.

Esterov D, Greenwald BD. 2017. Autonomic dysfunction after mild traumatic brain injury. Brain Sci 7:1-8.

Gagnon I, et al. 2004. Children show decreased dynamic balance after mild traumatic brain injury. Arch Phys Med Rehabil 84: 444-452.

Gannon RP, et al. 1978. Auditory and vestibular damage in head injuries at work. Arch Otolaryngol 104(7): 404-408.

Geurts AC, et al. 1996. Identification of static and dynamic postural instability following traumatic brain injury. *Arch Phys Med Rehabil* 77(7): 639-644. Goodrich GL, et al. 2013. Mechanisms of TBI and visual consequences in military and veteran populations. *Optom Vis Sci 90*(2): 106-112.

Goodrich GL, et al. 2007. Visual function in patients of a polytrauma rehabilitation center: a descriptive study. J Rehabil Res Dev 44(7): 929-936.

Gordon CR, et al. 2004. Is posttraumatic benign paroxysmal vertigo different from the idiopathic form? Arch Neurol 61(10): 1590-1593.

Gottshall K. 2011. Vestibular rehabilitation after mild traumatic brain injury with vestibular pathology. NeuroRehabilitation 29: 161-171.

Gottshall K, et al. 2005. A unique collaboration of female medical providers within the United States armed forces: rehabilitation of a marine with postconcussive vestibulopathy. *Work 24*: 381-386.

Gould SJ, et al. 2022. Orthostatic intolerance in post-concussion patients. Phys Sports Med. 50(5): 429-434.

Griffiths MV. 1979. The incidence of auditory and vestibular concussion following minor head trauma. J Laryngol Otol 93(3): 253-265.

Gurley JM, et al. 2013. Vestibular rehabilitation following mild traumatic brain injury. *Neurorehab* 32(3): 519-528.

Guzkiewicz KM, et al. 1996. Effect of mild traumatic head injury on postural stability in athletes. J Athl Train 31(4): 300-306.

Heyer GL, et al. 2018. Lightheadedness after concussion: not all dizziness is vertigo. *Clin J Sport Med 28*(3): 272-277.

Heyer GL, et al. 2016. Orthostatic intolerance and autonomic dysfunction in youth with persistent postconcussion symptoms: a head-upright tilt table study. *Clin J Sport Med 26*(1): 40-45.

Hilz MJ, et al. 2016. Valsalva maneuver unveils central baroreflex dysfunction with altered blood pressure control in persons with history of mild traumatic brain injury. *BMC Neurol 16*: 61.

Hoffer ME, et al. 2004. Characteristics and treating dizziness after mild head trauma. Otol Neurotol 25(2): 135-138.

Kay DW, et al. 1971. Brain trauma and the postconcussional syndrome. *Lancet* 2(7733): 1052-1055.

Kaufman DR, et al. 2014. Test-retest reliability and responsiveness of gaze stability and dynamic visual acuity in high school and college football players. *Phys Ther Sport 15*(3): 181-188.

Langlois JA, et al. 2006. The epidemiology and impact of traumatic brain injury: a brief review. J Head Trauma Rehabil 21(5): 375-378.

Lau BC, et al. 2011. Which on-field signs/symptoms predict protracted recovery from sport-related concussion among high school football players? *Am J Sports Med 39*(11): 2311-2318.

Lew HL, et al. 2007. Program development and defining characteristics of returning military in a VA polytrauma network site. *J Rehabil Res Dev 44*(7): 1027-1034.

Linthicum FH, Rand CW. 1931. Neuro-otological observations of concussion of the brain. Arch Otolaryngol 13(6): 785-821.

Magone MT, et al. 2014. Chronic visual dysfunction after blast-induced mild traumatic brain injury. J Rehabil Res Dev 51(1): 71-80.

Maskell F, et al. 2006. Dizziness after traumatic brain injury: overview and measurement in the clinical setting. *Brain Inj 20*(3): 293-305.

McCorry LK. 2007. Physiology of the autonomic nervous system. Am J Pharm Educ 71: 78.

McCrea M, et al. 2013. Incidence, clinical course, and predictors of prolonged recovery time following sport-related concussion in high school and college athletes. J Int Neuropsychol Soc 19(1): 22-33.

McCrea M, et al. 2003. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study JAMA 290(19): 2556-2563.

McCrory P, et al. 2018. Consensus statement on concussion in sport – the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med 51: 838-847.

McCrory P, et al. 2013. Consensus statement on concussion in sport: 4th international conference on concussion in sport held in Zurich, November 2012. *Br J Sports Med 47*: 250-258

Mucha A, et al. 2014. A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: preliminary findings. *Am J Sports Med* 42(10): 2479-2486.

Murray DA, et al. 2017. Can vestibular rehabilitation exercises help patients with concussion? A systemic review of efficacy, prescription and progression patterns. *Br J Sports Med 51*(5): 442-451.

Nagib S, Linens SW. 2018. Vestibular rehabilitation therapy improved perceived disability associated with dizziness post-concussion. J Sport Rehab 24: 1-15.

Park K, et al. 2018. Effectiveness of vestibular rehabilitation therapy for treatment of concussed adolescents with persistent symptoms of dizziness and imbalance. *J Sport Rehabil 4*: 1-6.

Parker TM, et al. 2006. Gait stability following concussion. *Med Sci Sports Exerc 38*(6): 1032-1040.

Pearson BW, Barber HO. 1973. Head injury. Some otoneurologic sequelae. Arch Otolaryngol 97(1): 81-84.

Picciotti PM, et al. 2016. Comorbidities and recurrence of benign paroxysmal positional vertigo: personal experience. Int J Audiol 55(5): 279-284.

Pickett TC, et al. 2007. Objectively assessing balance deficits after TBI: role of computerized posturography. J Rehabil Res Dev 44(7): 983-990.

Reimann BL, et al. 1999. Relationship between clinical and forceplate measures of postural stability. J Sports Rehabil 8: 71-82.

Reneker JC, et al. 2017. Feasibility of early physical therapy for dizziness after a sports-related concussion: a randomized clinical trial. Scand J Med Sci Sports 27(12): 2009-2018.

Rouse MW, et al. 1999. Frequency of convergence insufficiency among fifth and sixth graders. The convergence insufficiency and reading study (CIRS) group. *Optom Vis Sci 76*(9): 643-649.

Scherer MR, et al. 2011. Evidence of central and peripheral vestibular pathology in blast-related traumatic brain injury. *Otol Neurotol 32*(4): 571-580. Schneider KJ, et al. 2017. Rest and treatment/rehabilitation following sport-related concussion: a systemic review. *Br J Sports Med 51*(2): 930-934. Schneider KJ, et al. 2014. Cervicovestibular rehabilitation in sport-related concussion: a randomized controlled trial. *Br J Sports Med 48*(17): 1294-1298.

Slobonouv S, et al. 2006. Alterations in postural responses to visual field motion in mild traumatic brain injury. *Neurosurgery 59*(1): 134-139.

Slobonouv S, et al. 2008. Residual effects from concussion as revealed by virtual time-to-contact measures of postural stability. *Clin Neurophysiol 119*(2): 281-289.

Smulligan KL, et al. 2022. Examining initial post-concussion dizziness and postural stability as predictors of time to symptom resolution. J Sci Med Sport. 25(6): 455-459.

Stelmack T, et al. 2009. Visual function in patients followed at a Veterans Affairs polytrauma network site: an electronic medical record review. *Optometry 80*: 419-424.

Steindl, et al. 2008. Effect of age and sex on maturation of sensory systems and balance control. *Dev Med Child Neurol 48*(6): 477-482. Sufrinko, et al. 2017. History of high motion sensitivity predicts vestibular dysfunction following sport/recreation-related concussion. *Clin J Sport Med,* epub ahead of print.

Telian SA, Shepard NT. 1996. Update on vestibular rehabilitation therapy. Otolaryngol Clin North Am 29(2): 359-371.

Thayer JF, Lane RD. 2009. Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. *Neurosci Biobehavioral Rev 33*: 81-88.

Tuohimaa P. 1978. Vestibular disturbances after acute mild head injury. Acta Otolaryngol Suppl 359: 3-67.

Zhou G, Brodsky JR. 2015. Objective vestibular testing of children with dizziness and balance complaints following sports-related concussions. *Otolaryngol Head Neck Surg* 152(6): 1133-1139.