

The question of whether treating hearing loss could reduce cognitive decline remained unknown

- Question cannot be definitively answered through observational studies because of bias from residual confounding (e.g., health behaviors, income, etc.)
- Recent meta-analysis of observational studies (Yeo et al, JAMA Neurology, Feb 2023): Hearing aid use associated with 19% decreased hazard of long-term cognitive decline
- No prior randomized controlled trial has ever investigated effect of hearing intervention on long-term cognitive decline or other functional outcomes (e.g., social isolation, loneliness, etc.)

The ACHIEVE study was based within the scientific & physical infrastructure of the Atherosclerosis Risk in Communities (ARIC) study^{*}

- ARIC study Ongoing longitudinal observational study of 15,792 adults followed for over 30 years at 4 dedicated field sites across the U.S.
- ARIC participants <u>Random</u> sample of the communities at the 4 sites who were ages 45-64 when recruited in 1987-89
- Original goal of the ARIC study was to understand how mid-life risk factors are associated with later life cardiovascular disease & brain health

ACHIEVE study

*ARIC funded through multiple NHLBI contracts & grants along with additional support from NINDS, NIA, and NIDCD

13

The ACHIEVE study cohort (n = 977) was recruited from two distinct study populations at each site

- **ARIC Cohort** (n = 238)
 - ARIC participants were a randomly recruited sample of the field site communities followed since 1987
- De novo cohort (n = 739)
 - New healthy volunteers responded to advertisements about a clinical trial focused on interventions for healthy aging
- All participants informed they would be randomized to one intervention & offered the other intervention after Year 3

Main Inclusion Criteria:

- 70-84 years-old
- MMSE ≥ 23 for high school degree or less; ≥ 25 for some college or more
- Untreated hearing loss with 0.5-4 kHz pure tone average ≥30 and <70 dB in the better-hearing ear
- Word recognition in quiet \geq 60% correct in the better-hearing ear
- Community-dwelling

Main Exclusion Criteria:

- Self-reported disability in 2+ ADL
- Presenting near visual acuity worse than 20/63 (14-point font)
- Permanent conductive hearing loss

ACHIEVE study

Design: Randomization & Interventions

• Eligible participants randomized 1:1 to hearing intervention versus health education control, stratified by severity of hearing loss, recruitment source (ARIC vs de novo) & field site

Hearing Intervention

- Best-practices hearing intervention provision with a certified study audiologist
- 4 sessions to receive hearing loss education and hearing aids & related technologies (streamers, remote mic, etc.)
- Semiannual visits thereafter for 3 years to receive booster sessions

Health Education Control

- Established program (10 Keys) to promote understanding of key health topics (nutrition, etc.) important for healthy aging
- 4 sessions with a certified health educator to cover healthy aging topics
- Semiannual visits thereafter for 3 years to receive booster sessions

ACHIEVE study

15

Design: Study Outcomes Saseline & every 6 month in-person visits for intervention delivery & outcome assessments for 3 years Frimary endpoint: Change from baseline to Year 3 in a global cognition standardized factor score derived from a comprehensive neurocognitive battery administered annually Secondary cognitive outcomes: Domain-specific cognitive function (memory, executive function & language) Incident cognitive impairment Other pre-specified outcomes Hearing Handicap Inventory for the Elderly* (HHI; measure of self-reported communication impairment); Cohen Social Network Index*, UCLA Loneliness Scale*; Brain MRI; depression; physical functioning/activity & accelerometry; falls; hospitalizations; health care costs

Verification of speech understanding conducted before cognitive test administration

- 1. *Digit Span Backwards (DSB)
- 2. Boston Naming Test (BNT)
- 3. Word Fluency Test (WFT)

4. Animal Naming Score (ANS)

5. Digit Symbol Substitution (DSS)

* Indicates tests with only auditory stimuli ACHIEVE study

- 6. Trail Making Test A (TMTA)
- 7. Trail Making Test B (TMTB)
- 8. Incidental Learning (ILR)
- 9. *Logical Memory Test (LMT)
- **10. Delayed Word Recall (DWR)**

Impact of COVID-related field site closures -Baseline & 3-year outcomes were unaffected

- Study procedures were adapted for phone-based intervention delivery & outcome assessments from March 2020 to June 2021
- Initial provision of study interventions and baseline & Year 3 in-person neurocognitive assessments were unaffected

19

Statistical Analysis - Cognitive outcomes Estimated effect of assignment to hearing intervention versus control on change in global cognition from baseline to Year 3 (primary outcome) Mixed effects models adjusted for baseline hearing (PTA <40 vs 40+ dB), recruitment source, field site, age, sex, education, presence of APOE ɛ4 allele(s), & covariate x time interactions Multiple imputation by chained equations used to estimate missing Year 3 cognitive factor scores & covariates using a prespecified model Main analysis used only baseline and Year 3 in-person neurocognitive scores. Year 1 or 2 in-person scores only used when a participant died prior to Year 3. Pre-specified sensitivity analyses: Replication of primary analyses stratified by study population (ARIC, De novo) Other variations of the analytic model parameters (e.g., per protocol, CACE)

Follow-Up 490 Hearing intervention ARIC: 120 De novo: 370 487 Health education control ARIC: 118 De novo: 369 Visits Year De no Year De no 114 Assessed in-person 320 115 Assessed in-person 296 Assessed by phone 39 Assessed by phone 48 0 1 5 Incomplete assessment 5 Incomplete assessment 4 Lost to follow-up Lost to follow-up 0 0 17 0 Withdrew Withdrew Decea Deceased J Complete Year 3 follow-up Year 2 De no Year 2 De nov 79 Assessed in-person 95 80 Assessed in-person 101 data available on 90% 28 Assessed by phone 255 33 Assessed by phone 235 4 Incomplete assessment 7 3 Incomplete assessment 4 2 Lost to follow-up 3 0 Lost to follow-up (877/977) of participants. 2 Withdrew 0 0 Withdrew Deceased 4 Deceased J \downarrow Year 3 De nov Year 3 De nove 97 Assessed in-person 336 106 Assessed in-person 323 4 5 Assessed by phone 3 1 Assessed by phone 7 Incomplete assessment 3 3 Incomplete assessment 5 Lost to follow-up Withdrew 0 q 2 Lost to follow-up 0 Withdrew Deceased Deceased

Baseline Characteristics by Recruitment Source

De novo cohort has fewer risk factors for cognitive decline than ARIC

Baseline characteristics	All Participants (N=977)	ARIC Cohort (N=238)	De novo Cohort (N=739)			
*Age, mean (SD), y	76.8 (4.0)	78.9 (2.9)	76.1 (4.0)			
*Female sex, No. (%)	523 (53.5)	147 (61.8)	376 (50.9)			
*Black race, No. (%)	112 (11.5)	68 (28.6)	44 (6.0)			
*Education, No. (%)						
Less than high school	37 (3.8)	22 (9.3)	15 (2.0)			
High school, GED, or vocational school	418 (42.8)	96 (40.5)	322 (43.6)			
College, graduate, or professional school	521 (53.4)	119 (50.2)	402 (54.4)			
*Income, No. (%)						
Under \$25,000	147 (15.5)	60 (26.7)	87 (12.0)			
\$25,000-\$49,999	283 (29.8)	77 (34.2)	206 (28.4)			
\$50,000-\$74,999	210 (22.1)	47 (20.9)	163 (22.5)			
\$75,000-\$100,000	140 (14.7)	21 (9.3)	119 (16.4)			
Over \$100,000	170 (17.9)	20 (8.9)	150 (20.7)			
*indicates statistically significant difference between groups						

23

Baseline Characteristics by Recruitment Source (cont'd)

De novo cohort has fewer risk factors for cognitive decline than ARIC

Baseline characteristics	All Participants (N=977)	ARIC Cohort (N=238)	De novo Cohort (N=739)			
One or more apolipoprotein Ε ε4 alleles, No. (%)	224 (24.7)	59 (25.7)	165 (24.3)			
*Diabetes, No. (%)	195 (20.0)	68 (28.6)	127 (17.2)			
Hypertension, No. (%)	651 (66.8)	169 (71.9)	482 (65.2)			
*Living alone, No. (%)	290 (30.0)	83 (35.9)	207 (28.1)			
Pure tone average, mean (SD), dB	39.4 (6.9)	39.1 (6.7)	39.5 (7.0)			
*Hearing handicap inventory, mean (SD)	15.3 (9.8)	12.0 (9.5)	16.3 (9.6)			
*Mini-mental state exam, mean (SD)	28.2 (1.6)	28.0 (1.8)	28.3 (1.6)			
*Global cognition, mean (SD)	0.000 (0.926)	-0.379 (1.042)	0.123 (0.851)			
*Executive function, mean (SD)	-0.001 (0.888)	-0.318 (0.999)	0.102 (0.824)			
*Language, mean (SD)	0.000 (0.837)	-0.395 (0.924)	0.127 (0.765)			
*Memory, mean (SD)	0.000 (0.909)	-0.191 (0.937)	0.061 (0.892)			
	*indicates statistically significant difference between gro					

ACHIEVE study

Hearing Intervention & 3-Year Cognitive Outcomes Limitations

- Effects of hearing intervention on populations at decreased risk of cognitive decline & on rates of cognitive impairment (dementia) will require follow-up beyond 3 years
- Control participants could perform more poorly on tests comprising only auditory stimuli (2/10 tests). However, strongest effects in ARIC observed in language domain which did not consist of any auditory-only tests
- Participants & study staff could not be feasibly masked to intervention assignment

ACHIEVE study

	3-Year Change in Cortical Thickness, mm β (95% Cl)	Favors Control	1	Favors Intervention		Intervention & Control 3-Year Change in Cortical Thickness, mm β (95% Cl)	Cohen's D
Frontal Lobe				•			
Control	-0.011 (-0.021, -0.001)		-	•		0.014 (-0.001, 0.028)	0.110
Intervention	0.003 (-0.008, 0.014)					p=0.066	
Temporal Lobe							
Control	-0.035 (-0.047, -0.024)					0.006 (-0.009, 0.022)	0.047
Intervention	-0.029 (-0.040, -0.018)					p=0.44	
Occipital Lobe							
Control	-0.007 (-0.015, 0.000)					0.011 (0.000, 0.023)	0.113
Intervention	0.004 (-0.004, 0.011)					p=0.051	
Parietal Lobe				•			
Control	-0.006 (-0.016, 0.004)			•		0.014 (-0.002, 0.029)	0.109
Intervention	0.008 (-0.003, 0.019)					p=0.082	
Whole Brain							
Control	-0.014 (-0.023, -0.006)					0.012 (0.000, 0.024)	0.105
Intervention	-0.003 (-0.011, 0.006)					p=0.057	
	-0	.020	0.000	0.020	0.040		
		Difference 3-Year Ch	Between In ange in Cort	tervention & Co tical Thickness,	ntrol mm		

Difference Between

41

Hearing Intervention & Brain Cortical Atrophy Summary Analyses demonstrate a clear signal of hearing intervention being associated with reduced cortical thinning over 3 years in whole brain & certain lobar regions Pattern of findings suggest that hearing intervention may have greatest effects in the pars orbitalis & cingulate cortices and not in the temporal lobe Potential mechanisms could include effects of hearing intervention on sustained alterations in patterns of neural activity, increased social & physical activity, etc.

ACHIEVE Study - Key Findings

- High adherence to & satisfaction with hearing intervention sustained over 3 yrs with positive effects on self-perceived communication impairment
- Exploratory MRI analyses suggest biomarker effects of hearing intervention on reducing cortical thinning within 3 years
- Strong effects of hearing intervention (48% reduction) on 3-year global cognitive decline in the ARIC cohort that came from a random sample of the population
 - Slow rate of cognitive change in healthy de novo volunteers would limit any apparent cognitive benefits of hearing intervention within just 3 years
- Key inference: Hearing intervention could reduce cognitive loss within 3 years for populations of older adults at increased risk for cognitive decline.

ACHIEVE study

ACHIEVE Study - Implications for Clinical Care

- Clinical recommendations always require extrapolating scientific evidence to the individual while balancing risk vs. benefit
- Clinical Is a patient at increased risk of cognitive decline (more like the ARIC or De novo cohort)? What about patients with severe hearing loss who could benefit from a cochlear implant?
- My approach I focus conversation on the tangible proximal outcomes of hearing intervention on communication and social function. I only mention potential downstream effects on supporting cognitive/brain health as an afterthought.

ACHIEVE study

Funding & support ACHIEVE main trial: NIA/NIH grant R01AG055426 ACHIEVE MRI ancillary study: NIA/NIH R01AG060502 Pilot study: NIA/NIH R34AG046548 & the Eleanor Schwartz Charitable Foundation ARIC: NHLBI contracts HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700005I, HHSN268201700004I Neurocognitive data: NIH grants 2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 (NHLBI, NINDS, NIA and NIDCD) Previous brain MRI examinations: NHLBI grant R01HL70825 Hearing aids & related technologies and training support of study audiologists provided in-kind by Sonova/Phonak through a materials transfer agreement with Johns Hopkins ACHIEVE study

Thank you! www.AchieveStudy.org Frank Lin flin1@jh.edu