Current Perspectives on Noise-Induced Hearing Loss: A framework and recent developments in hearing loss prevention

Gregory A. Flamme, Ph.D.

Senior Scientist

Canadian Academy of Audiology Conference, Kelowna, BC 9 October 2024

- The primary goal of Hearing Loss Prevention (a.k.a. Hearing Conservation):
 - Reduce the incidence and prevalence of hearing trouble
 - Incidence: New cases during a time period
 - Prevalence: Total cases at a point in time

- Harm Disadvantageous change
- Hazard Agent or event capable of causing harm
- Risk Probability of harm, given exposure magnitude
- Mitigation Strategy to reduce risk

Hazarc

- What are we trying to prevent?
 - Important
 - A difference isn't a difference unless it <u>makes</u> a difference
 - "Wild-type human" vs. animal models
 - Measurable
 - While alive
 - Reliably
 - Quickly for large scale

- Example definitions
 - Fowler (1942)
 - Any interference with speech audibility in quiet
 - Complicated
 - Speech Intelligibility Index
 - False alarms at best HLs
 - Based on average threshold
 - Frequency combinations (kHz)
 - 0.5, 1, 2
 - 0.5, 1, 2, 3
 - 0.5, 1, 2, 4
 - 1, 2, 3, 4
 - 2, 3, 4
 - 3, 4, 6
 - Ear combinations
 - Better, worse, combined, composite

Risk

- What are we trying to prevent?
 - **Important**
 - A difference isn't a difference unless it makes a difference
 - "Wild-type human" vs. animal models
 - Measurable
 - While alive
 - Reliably
 - Quickly for large scale

- Example definitions
 - Individual thresholds
 - Any threshold in any ear worse than some limit

- What are we trying to prevent?
 - Important
 - A difference isn't a difference unless it <u>makes</u> a difference
 - "Wild-type human" vs. animal models
 - Measurable
 - While alive
 - Reliably
 - Quickly for large scale

- Example definitions
 - Individual thresholds
 - Labels are problematic for general public
 - Can describe configuration
 - Based on averages, but applied to individual thresholds

Table 2					
Table 2					
Scale of Hearing Impairment.					
(Modified from Goodman, 1965).					
Average Hearing					
Threshold Level					
in dB (re: 1969 ANSI)	Hearing Loss Label				
-10-15	Normal Hearing				
16-25	Slight Hearing Loss				
26-40	Mild Hearing Loss				
41-55	Moderate Hearing Loss				
56-70	Moderately Severe Hearing Loss				
71-90	Severe Hearing Loss				
91-	Profound Hearing Loss				

- How well do these approaches work?
 - Sensitivity
 - Proportion of known cases detected
 - Specificity
 - Proportion of known NON-cases detected
 - Positive Predictive Value
 - Probability of a correct detection
 - Specificity & prevalence
 - Negative Predictive Value
 - Probability of a correct rejection
 - Sensitivity & prevalence

$$Sensitivity = \frac{True\ Positives}{True\ Positives + False\ Negatives}$$

$$Specificity = \frac{True\ Negatives}{True\ Negatives + False\ Positives}$$

Hearing trouble result

		Hearing trouble	No hearing trouble	Total
Audiometric indicator result	Positive	(True Positive)	B (False Positive)	T _{Test Positive}
	Negative	C (False Negative)	(True Negative)	T _{Test Negative}
		T _{Hearing} Trouble	T No hearing trouble	Total

- How well do these approaches work?
 - Sensitivity
 - Proportion of known cases detected
 - Specificity
 - Proportion of known NON-cases detected
 - Positive Predictive Value
 - Probability of a correct detection
 - Specificity & prevalence
 - Negative Predictive Value
 - Probability of a correct rejection
 - Sensitivity & prevalence

$$PPV = \frac{True\ Positives}{True\ Positives + False\ Positives}$$

$$NPV = \frac{True\ Negatives}{True\ Negatives + False\ Negatives}$$

Hearing trouble result

		Hearing trouble	No hearing trouble	Total
Audiometric indicator result	Positive	(True Positive)	B (False Positive)	T _{Test Positive}
	Negative	C (False Negative)	(True Negative)	T Test Negative
		T _{Hearing} Trouble	T No hearing trouble	Total

Negative Predictive Value

Overall evaluations

What is our appetite for being wrong?

25% correct

37% correct 81% correct

- False negative individual with hearing trouble incorrectly identified as not having hearing trouble
- True positive individual with hearing trouble correctly identified as having hearing trouble
 - True negative individual with no hearing trouble correctly identified
 - False positive individual with no hearing trouble incorrectly identified as having hearing trouble

- Short-term sensitivity
 - TTS 2 minutes after end (TTS₂)
 - 15 to 25 dB
 - Military operations
- Cochlear synaptopathy
 - TTS₂ > 50 dB
 - Residual damage after threshold recovery
- Eardrum rupture
- Speech-in-noise
 - Auditory v. Linguistic factors
 - Binary scoring

- Neurocognitive damage
 - Blunt impact, Blast
 - Tinnitus
 - Amyloid beta proteins
 - Decision speed and accuracy
- Educational outcomes
 - Reading
 - Math
 - Science
- Performance degradation
 - Other safety outcomes
 - Mission effectiveness

- Agent or event capable of causing harm
 - Risk factor
- Capable ≠ Certain
- Exposure: Magnitude × Time

Examples:

- Excessive noise
- Age-related
- Head/Neck injuries
- Ototoxic chemicals
 - Prescription v. other
 - Smoking
 - Organic solvents
- Ear infections
- Inflammation

Continuous

- Metabolic/oxidative stress
- Typical noise in daily life
- Excess risk (Intersociety v. NIOSH)

Sequential

- Different exposures in series
- Effective quiet
 - Below this level, noise does not interfere with recovery from temporary threshold shift

Impulsive

- Metabolic/oxidative stress
- Mechanical strain
- Impulse: Combustion
- Impact: Collision
- Mixed/simultaneous
 - Impulsive plus continuous

• Daily life versus occupational time-weighted averages

Noise

- Age-related changes as "background noise"
 - Public health
- Senescence + unmeasured exposures
 - Biology changes slowly
- In the U.S., hearing has improved over the last few decades.
 - Changed exposure and/or mitigation
 - Hidden opportunities

SASRAC

Flamme, 2024 & unpublished occupational database analyses (N = 28,660 baselines; test N = 70,134)

- Population-based 25th
 percentile trend is similar to
 the median trend
- Asymmetry around median
 - Exposure
 - Health conditions
 - Susceptibility

Head and neck injury

- Outcomes
 - Hearing sensitivity
 - With or without skull fracture
 - Closed- or open-head
 - Tinnitus
 - Neurocognitive symptoms
- Modes
 - Blunt force
 - Head impact
 - Fall
 - Motor vehicle accident
 - Blast
 - Small arms discharge
 - Explosions

- New instrumentation
 - Acoustic
 - Acceleration
 - Bone/tissue conduction
 - Hydrophone
 - Pressure waves through brain

Phantom Exterior

Sensor Locations in Phantom Interior

- Incidence declines after kindergarten
- Ear infections and hearing trouble travel together

Reading

- Starts around 3 ear infections
- Impact limited to current year

- Medications
 - Monitoring
- Organic solvents
 - Styrene
 - Toluene
 - Xylene
 - Ethylbenzene
 - Benzene (?)
- Metals
 - Lead
 - Mercury

- Asphyxiants (potentiation)
 - Carbon monoxide
 - Hydrogen cyanide
- Pesticides
 - Organophosphates
- Smoke
 - Combustion products
 - Solvents
 - Asphyxiants

- Developing understanding
- Biomarkers
 - Cytokines
 - Interleukin-6
 - Interleukin-8
 - (many others)
 - Amyloid plaques
 - Proteins
 - Accumulate
 - Might promote oxidative stress
- NSAIDs
 - Indicates disorder and treatment

- Related conditions
 - Tinnitus
 - Separate from hearing sensitivity
 - Autoimmune
 - Rheumatoid arthritis
 - Vasculitis
 - Lupus
 - Chronic inflammatory
 - Amyloidosis
 - Polymyalgia
 - Crohn's
 - Autoinflammatory
 - Atherosclerosis
 - Type 2 diabetes

Hazard

- Multiple hazards, even if you only measure noise
 - Sequential vs simultaneous
 - Carbon monoxide half-life: 4-5 hours (room air)

	None/low chemical Row %	Moderate chemical Row %	High Chemical Row %	N
No noise	94	3	3	11,516
Low noise	72	20	8	2,295
Moderate noise	59	22	19	1,649
High noise	57	20	23	3,468
Very high				
noise	46	27	26	296
Total	81	10	9	19,224

- Chicken (again!)
- Dose-response relationship
 - Dose: Colony-Forming Units (CFU)
 - Response: Probability of illness
 - Darker curve: Median
- Acceptable risk: Policy
 - Salmonella USDA
 - Raw max: 1000 CFU/100 g
 - Ready to eat: < 1 CFU/100 g
 - 5-log (10,000x) cooking/processing effect
 - 2-log (100x) safety margin
 - Dose reduced by a factor of 10 million
 - Residual risk: vanishingly small

- Probability of harm as a function of exposure
- "Acceptable" risk is driven by policy
 - 95% certain that 95% will be protected
 - No more than a specified impairment beyond unexposed

Hazard

nazan Dich

- 8-hour average levels (L_{Aeq8}) 85 and above
 - 8 % excess risk
 - Confidence interval 3 to 15 %

Risk

- Probability of harm
 - Varies with
 - Harm of interest
 - Exposure metric

Chan et al., (2016); Note that SEL differs from Leg8 by about 45 dB.

- Risk can be complicated
 - Temporary threshold shift (TTS) can jeopardize other aspects of safety
 - Injury
 - Hazard to others nearby
 - Worker effectiveness and productivity

Harm Hazard

- Susceptibility: Systematic increase in harm without increased exposure
- Assumption of 6 dB SD is incorrect above 1 kHz.
 - 6 dB at 0.5 kHz
 - 7 dB at 1 kHz
 - 11 dB at 2 kHz
 - 12 dB at 3 kHz
 - 15 dB at 4 kHz
 - 23 dB at 6 kHz
- Combined sample size

kHz	0.5	1	2	3	4	6
Ears	62	272	321	272	321	272
Studies	10	16	19	16	19	16

- Dose-response curves are often not available
- Non-human models are common
 - Rodents
 - Cats
 - Amphibians
 - Birds
 - Fish
 - In vitro
- Surrogate outcomes are useful but insufficient
 - Histology
 - Electrophysiology
 - Uncontrolled observations

Mitigation

- Eliminate hazard
 - Engineering and Administrative controls (possibly)
- If nothing else, reduce risk
 - Some hazard remains
 - Hearing Protection Devices
 - Some engineering and administrative controls

- Field-compatible technology
 - High-attenuation earphones
 - Wireless/tablet interface
- Objective: Austere military environment
 - Every other place is easier

Personal Attenuation Ratings (PAR)

- Lab measures indicate capacity, not effectiveness
 - CSA Z94.2-14 (2019) based on experimenter fit, N = 10, 3 insertions (Octave bands and NRR)
 - Individual testing preferred

Personal Attenuation Ratings (PAR)

PAR

- Documents individual attenuation
- Can identify people who need training or more compatible HPDs, given exposure
- Methods
 - Microphone in real ear (MIRE)
 - Real ear attenuation at threshold (REAT)
- Possible integration with exposure records and routine audiometry
- Some generic, some manufacturer-specific
- Earplug PAR is both easier and more important

Harm Hazard

Murphy, et al. (2022)

Mitigation

- Incremental assessment of REAT PARs
 - Only 3 frequencies needed
 - 0.5, 1, 2 kHz
 - 1, 2, 4 kHz (passive nonlinear HPDs)
- For each frequency
 - Evidence of sufficiency
 - Evidence of inadequacy
 - Not conclusive, get more info.
- More skips when PAR target is lower

Mitigati

- Engineering control (muffler)
 Restricted
 No recognized standard
 - No recognized standard
 - Instrumentation
 - Procedure

Firearm suppressors

- Analysis
- Likely to become more important
 - Canadian Modular Assault Rifle (CMAR) program

Conclusion

Harm Hazard Risk Mitigation

- Framework
 - Harm
 - Hazard
 - Risk
 - Mitigation
- - Same harm, multiple causes
 - Harms occur at different doses
 - Temporary v. permanent threshold shift
 - Cochlear synaptopathy

- Some hazards travel together
 - Noise and asphyxiants
 - Noise and solvents
 - Propellant combustion products
- Prevention of auditory harm, not just noise-induced harm
- Case history
 - Screen broadly for hazards/risk factors
 - If risk (dose-response) is known, is status consistent with the dose?
 - If not, keep looking
- Biomarkers in future?

Questions?

Greg Flamme gflamme@sasrac.com

